
2026/02/02 15:22 1/5 EEC420 - Operating Systems

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

EEC420 - Operating Systems

This is an introductory course to operating systems (OS) - we use x86 systems as reference (ARM may
be included in the future).

Practical Exercise

General Introduction

The core of an Operating System (OS) is the kernel.

OS Kernel

system management software
provides hardware access to application software (user programs)

four primary tasks:
process/thread management (multitasking)
memory management
disk management
peripheral management (I/O)

Bootstrap Process

Bootstrapping

common issue for general purpose computers
software usually reside in secondary memory
how do we load software to primary memory?

bootstrap process helps load an OS
usually in multiple stages
first stage as simple as possible
small footprint in system address space?

processors on powerup (or reset)
have specific address to start execution
e.g. for IA32 0xFFFFFFF0 (32-bit address)
legacy from 8086 0xFFFF0 (20-bit address)

non-volatile memory placed at that address
ROM → EEPROM → NVRAM
contains first stage bootstrap code
e.g. for IA32 we have BIOS

BIOS (x86) Bootstrap

http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:eec420_lab


Last update: 2020/02/13 15:24 archive:eec420 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:eec420

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

BIOS bootloader
for cold-boot, perform POST (power-on self-test)
iterate boot device list
attempt to load first sector (next stage bootstrap)

load address is at 0x7C00
first sector (512 bytes) loaded here
must end with boot signature 0x55 0xAA (else HALT)
on hard-disks, usually have MBR

specifies partitions, so effective code size <512
loads first sector of boot partition

very limited, but can utilize BIOS functions
Master Boot Record (MBR) - Read more @ wikipedia

first sector of a partitioned storage
classic mbr:

446 bytes executable code
64 bytes partition entries (4 primary partitions)
2 bytes boot signature (0x55 0xAA)

modern mbr
218 bytes executable code
2 bytes (always 0x00?)
4 bytes disk timestamp
216 bytes executable code
4 bytes disk signature
2 bytes (always 0x00?)
64 bytes partition entries (4 primary partitionss)
2 bytes boot signature (0x55 0xAA)

superseeded by GUID partition table (GPT) - Read more @ wikipedia

BIOS (x86) Functions

invoked using software interrupts
as interrupt service (handler) routine

e.g. int 0x13 is for disk i/o routine
register ah used as function select

e.g. ah = 0x02 is to read sector from disk
register dl should have drive number

0x80 is first hard disk
limitations: int 0x13 supports disk size <8GB

extended bios provide more functions
extended disk excess

BIOS (x86) Operating Modes

IA32 processors support dual operating mode
Real mode & protected mode

Real mode
legacy 16-bit operating environment from 8086
segmented 20-bit address space

maximum 1MB address

https://en.wikipedia.org/wiki/Master boot record
https://en.wikipedia.org/wiki/Master boot record
https://en.wikipedia.org/wiki/GUID partition table
https://en.wikipedia.org/wiki/GUID partition table


2026/02/02 15:22 3/5 EEC420 - Operating Systems

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

an address is made up of segment and offset
segment - 16-bit segment selector (cs,ds,ss)
offset - 16-bit offset within a segment
address = segment « 4 + offset

segments obviously overlaps by 64k - 16
multiple address can refer to same physical address
e.g. 0x0000:0x7c00 and 0x07c0:0x0000 refer to same location

IA32 provides ways to switch operating mode
Protected mode

32-bit operating mode
segmented OR flat memory address
provides virtual memory (e.g. paging)

From BIOS to OS

BIOS boots to real mode
newer ones switch to protected mode to get more features
subsequent bootstrap code should check or assume in real mode
usually loads bootloaders (e.g. LILO for Linux, NTLDR for Windows)

BIOS functions no longer available in protected mode
only works in real mode
some OS temporarily drop to real mode to utilize BIOS functions!
so, OS in protected mode drives hardware directly (device drivers!)
Some OS (Windows) maintains backward compatibility

place WinAPI in place of legacy BIOS
older DOS programs can still invoke old interrupts services

OS (here, most of the time) means bootloaders
bootloaders can be part of an OS
bootloaders load actual OS kernel

BIOS to UEFI Transition

BIOS is being replaced by UEFI
Unified Extensible Firmware Interface

UEFI features
modular bootloading
boot off really large hard disks (>2TB)
hardware drivers in early boot

useful ones like graphics and networking
built-in shell (diagnostic/maintenance)

utilize GPT instead of MBR?
requires a special UEFI partition

can have multiple firwares

Hardware (x86) for OS Kernel

need to separate system (kernel) & application (user) software
hardware-level privilege



Last update: 2020/02/13 15:24 archive:eec420 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:eec420

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

IA32 Privilege Levels

called protections rings (4)
represents privilege levels
rings 0 to 3 (0 - highest, 3 - lowest)
most only use 2 (0 - kernel, 3 - user)

IA32 Control Registers

designated crX (e.g. cr0, cr2, cr3)
cr0 - enable/disable protected mode
cr3 - used for memory paging (virtualization)
cr2 - page fault address

these should only be accessed in ring 0
at boot, x86 in real-mode (no privilege levels)
modify cr0 - switch to protected mode
first code in protected mode is in ring 0
setup virtual memory (paging)
setup self to run in ring 0, others in ring 3!

IA32 Protected Memory

memory access in protected mode
can access >1MB, use paging
needs Global Descriptor Table (GDT)

setup memory size and location
also defines protection levels (ring)

can also setup local descriptor table
not used much?

create 2 main memory segments
memory only for ring 0 - kernel space
memory allowed for ring 3 (all) - user space
each memory space has own code/data segment
stack segment defined separately (per process, not system?)

IA32 Task Management

basic hardware level multitasking support
kernels may implement software-level

defined by Task State Segment (TSS) data structure
also contains protection levels



2026/02/02 15:22 5/5 EEC420 - Operating Systems

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:eec420

Last update: 2020/02/13 15:24

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:eec420

	EEC420 - Operating Systems
	General Introduction
	OS Kernel

	Bootstrap Process
	Bootstrapping
	BIOS (x86) Bootstrap
	BIOS (x86) Functions
	BIOS (x86) Operating Modes
	From BIOS to OS
	BIOS to UEFI Transition

	Hardware (x86) for OS Kernel
	IA32 Privilege Levels
	IA32 Control Registers
	IA32 Protected Memory
	IA32 Task Management



