
2025/10/01 02:24 1/3 Operating Systems

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Operating Systems

Being assigned to handle PGT200 - an undergraduate course on Operating Systems have grown some
interest in me to explore more details (I only had one course on this topic while doing my B.Eng. - and
that was it!). I just thought I should keep a note of this just in case I want to do more of this in the
future.

Most of the information here will be about implementations on standard PC operating systems, but my
interest would be to implement it on machines related to embedded systems.

Background Info

Booting a system (a more technical term would be bootstrapping):

usually BIOS on non-volatile memory (ROM or NVRAM)
Memory location 0xFFFFFFF0 on x86 systems? (0xFFFF0 on 8086/8088)
on some sytems, power-related stuffs may run before handing over to BIOS?

handles/prepares low-level hardware/software interface
bios interrupt service (interrupt vector table): 10h (display), 13h (disks), 16h (keyboard)
stack pointer is 512 bytes after bootsector (stack size!)?
512-bytes sector was standard disk sector size

mostly bypassed by modern 'plug-n-play' operating systems
PnP OS writes their own service routine (overwrites IVT?)

loads sector 0, cylinder 0 of selected boot drive
first sector (512 bytes) will be loaded to 0x7C00 (segment 0)
some bios used 0x07C0:0x0000 (same physical, different segment!)
execution transferred to that location
DL register holds boot drive number (e.g. 0x80 for first hard disk)
some BIOS will NOT transfer if INVALID MBR (e.g. no boot signature 0xAA55)

the code in sector 0 (first sector) is usually the bootloader
for a partitioned disk, there should be an MBR (classic MBR? 'modern' MBR?)
for non-partitioned disk (e.g. floppy) simply the bootloader?
enables multiple kernel to be selected at run-time

can be skipped for static single kernel usage? coreboot?
loads the kernel specified in its configuration

Master Boot Record

first sector of a partitioned storage
classic mbr:

446 bytes executable code
64 bytes partition entries (4 primary partitions)
2 bytes boot signature (0x55 0xAA)

modern mbr
218 bytes executable code



Last update: 2020/02/13 15:24 archive:eec420_lab http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:eec420_lab

http://azman.unimap.edu.my/dokuwiki/ Printed on 2025/10/01 02:24

2 bytes (always 0x00?)
4 bytes disk timestamp
216 bytes executable code
4 bytes disk signature
2 bytes (always 0x00?)
64 bytes partition entries (4 primary partitionss)
2 bytes boot signature (0x55 0xAA)

superseeded by GUID partition table (GPT) - Read more @ wikipedia

Read more @ wikipedia

Bootloader Program

This is a simple tutorial on how to develop a simple bootloader for x86 compatible machines, meant
to be used with a USB drive.

Using QEMU for Testing

It would be a nightmare to test a bootloader code using an actual USB drive booting an actual
machine unless you have other machine than the one you are using for writing/building the code. The
best way to do this is using a virtual machine and I recommend QEMU for this.

First we create a 256MB USB disk image using qemu-img

qemu-img create -f raw usb_drive.img 256M

Although not necessary, most USB drives nowadays are detected HDD and thus BIOS expects an MBR
(I'm not going into GPT for now). To create proper partition table in MBR with a single bootable W95
FAT32 (LBA) partition I use fdisk

fdisk -u usb_drive.img

A 'faster' way would be to simply type

fdisk -u usb_drive.img <<EOF
n
p
1

t
c
a
1
w
EOF

https://en.wikipedia.org/wiki/GUID partition table
https://en.wikipedia.org/wiki/GUID partition table
https://en.wikipedia.org/wiki/Master boot record
https://en.wikipedia.org/wiki/Master boot record


2025/10/01 02:24 3/3 Operating Systems

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Notice there are two newline characters (hit ENTER twice) between '1' and 't'. The fdisk version I'm
using writes a random (at least I think it's random) 32-bit disk signature at location 0x1b8 that is
optional and can be overwritten. Use

hexdump -C usb_drive.img

to verify 0x55, 0xAA sequence at location 0x1fe and 0x1ff respectively.

This is the part which is previously NOT needed due to the fact that floppy disks do not need partition
tables (non-partitioned storage). Since the bootloader code we developed is exactly 512 bytes, it is
obvious that the code will overwrite the partition information in the MBR. To avoid this we only write
446 bytes instead on the full 512 bytes, which is fine since the 0x55 0xAA sequence is already there.
Due to the fact that we are writing to a disk image, we need to add conv=notrunc option so that the
image file will NOT be truncated. (This is not a problem when the target is a device file!)

dd if=loader.bin of=usb_drive.img bs=1 count=446 conv=notrunc

Finally… to test the USB disk image

qemu-system-i386 -hda usb_drive.img -boot c

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:eec420_lab

Last update: 2020/02/13 15:24

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:eec420_lab

	Operating Systems
	Background Info
	Master Boot Record

	Bootloader Program
	Using QEMU for Testing


