2026/02/02 16:44 1/7 NMK206 - Computer Architecture

NMK206 - Computer Architecture

This course is Computer Architecture, offered by the Faculty of Electronics Engineering & Technology
(FKTEN) for Electronic Engineering Technology programs.

Download ModelSim 20.1.1.720 (Intel FPGA Starter Edition) setup (SHA-1 checksum). Linux users can
try this (SHA-1 checksum).

Video Guide(s)

YouTube Playlist

=

ModelSim: Installation
Note:Available on YouTube.
Note:Local copy available.

==

ModelSim: Create Project
Note:Available on YouTube.
Note:Local copy available.

ModelSim: Simulate Logic I)

Cicuit
Note:Available on YouTube.
Note:Local copy available.

Announcements

[20250323] Welcome to NMK206 info page (for 007 lab sessions only)!

[20250424] Soft reminder: Lab Assessment 1 @202500420-0800!

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://azman.unimap.edu.my/storage/ModelSimSetup-20.1.1.720-windows.exe
https://azman.unimap.edu.my/storage/ModelSimSetup-20.1.1.720-windows.exe.sha1
https://azman.unimap.edu.my/storage/ModelSimSetup-20.1.1.720-linux.run
https://azman.unimap.edu.my/storage/ModelSimSetup-20.1.1.720-linux.run.sha1
https://www.youtube.com/playlist?list=PLKQoMxsWIO1zOp5-TVTkfbcTYp3wp-tJL
https://youtu.be/oKgW5mtO8os
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt206:nmk206_202425s2_howto_install_modelsim.mp4
http://www.youtube-nocookie.com/embed/oKgW5mtO8os?
http://www.youtube-nocookie.com/embed/oKgW5mtO8os?
https://youtu.be/BneIhF8cKzQ
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt206:nmk206_202425s2_modelsim_0create_project.mp4
http://www.youtube-nocookie.com/embed/BneIhF8cKzQ?
http://www.youtube-nocookie.com/embed/BneIhF8cKzQ?
https://youtu.be/EPn5BKaFKpA
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt206:nmk206_202425s2_modelsim_1simulate.mp4
http://www.youtube-nocookie.com/embed/EPn5BKaFKpA?
http://www.youtube-nocookie.com/embed/EPn5BKaFKpA?

Last update: 2025/06/18 08:22 archive:nmk206 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206171

Lab Session

| am using Takahashi Method for these slides (Actually, | broke that method by adding diagrams and
long codes because | think my students need them). You will find them hard to understand if you do

not attend my sessions. So, that is the 'advantage' | gave to those who actually listen in class

e Lab Briefing
Slides
e Intro to CAD Tools and HDL
Slides
Online Session (Video)
¢ Verilog Basics
Slides
Online Session (Video)
o [Extra]
Online Session (Video) (Partial... was stopped due to low number of students)
e Combinational Logic
Slides (P1)
Slides (P2)
Slides (P3)
Slides (P4)
Slides (P5)
e Sequential Logic
Slides (P1)
Slides (P2)
e State Machine
Slides
e Simple Digital System
Slides

Verilog Coding Rule

This is the coding rule that | impose on my students. You will be penalized during assessments if it is
not adhered to.

1. One file for one module
o RULE: 1 file 1 module
2. File name must be the same as module name
o RULE: file name === module name (.v)
3. All circuit (module) must have a testbench (tb)
o tb is a also module (so, separate file)
o RULE: All module MUST have a testbench
o RULE: Tb name === module name + _tb
4. Use Verilog95 module declaration
o Port list contain names only (separate input/output declaration)
o Port connection(s) MUST BE specified using ordered list
o RULE: Port connection(s) by ordered list ONLY!
5. Modules for combinational logic should only use wire/assign statements

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 16:44

https://en.wikipedia.org/wiki/Takahashi_method

2026/02/02 16:44 3/7

NMK206 - Computer Architecture

o reg/always reserved for sequential logic and testbench modules
o RULE: comb. logic use assign/wire only!
6. Only basic logic gates are allowed
o Can only use AND/OR/INV in your logic implementation
o XOR logic is allowed for lab project only
o RULE: allowed operators AND, OR, INV
7. Assign statements can only have ONE binary operator
o Multiple bitwise inverts (~) are ok (they are unary operators)
o RULE: 2-input logic gates ONLY
8. ALL nets (wire/reg) MUST BE declared.
o some compiler may allow using without declaration
o for my assessments, they MUST BE declared
o RULE: All signals @wire must be declared!

Lab Code (202425s2) Archive

Complete template for a simple 4-bit processor core (as discussed during class) available

here

Lab Code (202425s2) Extra

Here is an example code to utilize the carry/borrow signals of our add/subtract modules at ALU level.
You may use this to create add-with-carry and subtract-with-borrow functions (you need selector

signal to 'enable' the carry/borrow in signals {iC} and {iB}).

alu flag_4b.v
alu 4b (iS,iP,1iQ oF, oY
iS
iP,1iQ
oF, oY
oY

iC, iB, oC,oB

tAO, tAl
tLO, tL1

add 4b a add (iC,iP,iQ,oC, tA@
sub 4b a sub (iB,iP,iQ, 0B, tAl
and 4b 1 and (iP,iQ, tLoO
or 4b 1 or (iP,1iQ,tL1

// separate flag bits for borrow and carry

oF 2'b00 , oB, oC

// should get from same bit position
iB
iC

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:nmk206:nmk206-upcore_20250527.zip
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:nmk206&codeblock=0

Last update: 2025/06/18 08:22 archive:nmk206 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206171

dmux41l selO® (iS,tA0,tAl,tLO,tL1, oY

alu_flag_4b tb.v

alu 4b tb
ds
dP,dQ,dF
mF , mY
cF,cY

loop, ecnt

ecnt
// TASK: try to put dS assignment in a loop! => shorter code!
dS = 2'b00; // test add
loop=0; loop loop
dF dP,dQ loop

cF cY dF dP dQ
cY!=mY| |cF mF
ecnt ecnt
$display("** Add error
(%X+%X+%X=%X@%X | %X :%x) ! " ,dP,dQ, dF mY, cY
mF cF

dS = 2'b01; // test sub
loop=0; Loop loop
dF dP,dQ loop

cF cY dP - dQ - dF
cY'=mY| |cF mF

ecnt ecnt

$display("** Sub error (%x-%x-%x=%x@%x)!",dP,dQ,dF mY, cY
mF cF

ds 2'b10; // test and

loop=0; Loop loop
dP,dQ loop
cY = dP & dQ

cY!=mY

ecnt ecnt
$display("** And error (%x&%sx=%x@%x)!'!",dP,dQ,mY,cY

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 16:44

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:nmk206&codeblock=1

2026/02/02 16:44 5/7 NMK206 - Computer Architecture

ds

alu_

2'bll; // test or
loop loop loop
dP,dQ loop

cY dP dQ
cY'=mY

ecnt ecnt
$display("** Or error (%x|%x=%x@%x)!'!",dP,dQ,mY,cY

ecnt
$display("-- Module alu 4b verified!"

$display("** Module alu 4b with %g error(s)!", ecnt

4b dut (dS,dP,dQ,dF,mF,mY

Lab Project (202425s2) Requirements

This is also shared in Google Doc format (link available in Google Classroom).

nmk206-202425s2 labproject.txt

You
the
foll

Thes
More

are required to implement a soft-processor core (HDL-based) with

owing minimum requirements:

8-bit microprocessor (instruction size, register size, etc.)

8 general purpose registers

8 ALU functions

basic instruction set

= move data between registers
perform basic ALU operations

load register with immediate value

e requirements are necessary for submission and minimum grade B.

functionality means better grades:
16-bit/32-bit microprocessor
carry circuit for adder (>8b)

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:nmk206&codeblock=2

Last update: 2025/06/18 08:22 archive:nmk206 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206171

- integer multiply/divide circuit (structural code - NOT behavior)
- bit-level manipulation (towards microcontroller)
- instruction fetch unit and memory interface

Note#1l: Auto-0 for downloaded codes!

Note#2: This is a group assignment, but marks will be evaluated
individually.

Assessment deliverables:

1) Verilog source files in a single ZIP file

- make sure only Verilog files are included in the file
- make sure all modules have each a proper testbench

- must be self-checking testbenches

2) Technical Document (Specifications)
- not more than 10 pages, no cover page (only list of members' names)
- content:
= short summary of features
block diagram of design
list of instructions (description and op-code)

3) An online demonstration / Q&A

- not more than 20 minutes

- content:

short summary of what has been implemented

if completed, demonstrate running the top-level testbench

if NOT completed, demonstrate running component-level testbenches

PROJECT DUE: Lab Session@wl4/14 (Item 1&2). Item 3 TBD.

Extra Info:
- each student may email in a contribution percentage information:
= list all group members (specify project contribution percentage of

each)

= percentage values should total up to 100% (may use fraction e.g.
1/3)
Note: this is optional,but if a member decides to do this, please
advise

the others in group to do the same

From:

http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP E y
Permanent link: R~
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206171 2[

I.
Last update: 2025/06/18 08:22 EI.

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 16:44

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206171

2026/02/02 16:44 717 NMK206 - Computer Architecture

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

	NMK206 - Computer Architecture
	Announcements
	Lab Session
	Verilog Coding Rule
	Lab Code (202425s2) Archive
	Lab Code (202425s2) Extra
	Lab Project (202425s2) Requirements

