
2026/02/02 16:44 1/7 NMK206 - Computer Architecture

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

NMK206 - Computer Architecture

This course is Computer Architecture, offered by the Faculty of Electronics Engineering & Technology
(FKTEN) for Electronic Engineering Technology programs.

Download ModelSim 20.1.1.720 (Intel FPGA Starter Edition) setup (SHA-1 checksum). Linux users can
try this (SHA-1 checksum).

Video Guide(s)

YouTube Playlist

ModelSim: Installation
Note:Available on YouTube.
Note:Local copy available.

ModelSim Installation

ModelSim: Create Project
Note:Available on YouTube.
Note:Local copy available.

ModelSim:Create New Project

ModelSim: Simulate Logic
Cicuit
Note:Available on YouTube.
Note:Local copy available.

|ModelSim:Simulate Logic Cicuit
Announcements

[20250323] Welcome to NMK206 info page (for 007 lab sessions only)!

[20250424] Soft reminder: Lab Assessment 1 @202500420-0800!

https://azman.unimap.edu.my/storage/ModelSimSetup-20.1.1.720-windows.exe
https://azman.unimap.edu.my/storage/ModelSimSetup-20.1.1.720-windows.exe.sha1
https://azman.unimap.edu.my/storage/ModelSimSetup-20.1.1.720-linux.run
https://azman.unimap.edu.my/storage/ModelSimSetup-20.1.1.720-linux.run.sha1
https://www.youtube.com/playlist?list=PLKQoMxsWIO1zOp5-TVTkfbcTYp3wp-tJL
https://youtu.be/oKgW5mtO8os
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt206:nmk206_202425s2_howto_install_modelsim.mp4
http://www.youtube-nocookie.com/embed/oKgW5mtO8os?
http://www.youtube-nocookie.com/embed/oKgW5mtO8os?
https://youtu.be/BneIhF8cKzQ
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt206:nmk206_202425s2_modelsim_0create_project.mp4
http://www.youtube-nocookie.com/embed/BneIhF8cKzQ?
http://www.youtube-nocookie.com/embed/BneIhF8cKzQ?
https://youtu.be/EPn5BKaFKpA
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt206:nmk206_202425s2_modelsim_1simulate.mp4
http://www.youtube-nocookie.com/embed/EPn5BKaFKpA?
http://www.youtube-nocookie.com/embed/EPn5BKaFKpA?

Last update: 2025/06/18 08:23 archive:nmk206 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206221

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 16:44

Lab Session

I am using Takahashi Method for these slides (Actually, I broke that method by adding diagrams and
long codes because I think my students need them). You will find them hard to understand if you do

not attend my sessions. So, that is the 'advantage' I gave to those who actually listen in class

Lab Briefing
Slides

Intro to CAD Tools and HDL
Slides

Online Session (Video)
Verilog Basics

Slides
Online Session (Video)

[Extra]
Online Session (Video) (Partial... was stopped due to low number of students)

Combinational Logic
Slides (P1)
Slides (P2)
Slides (P3)
Slides (P4)
Slides (P5)

Sequential Logic
Slides (P1)
Slides (P2)

State Machine
Slides

Simple Digital System
Slides

Verilog Coding Rule

This is the coding rule that I impose on my students. You will be penalized during assessments if it is
not adhered to.

One file for one module1.
RULE: 1 file 1 module

File name must be the same as module name2.
RULE: file name === module name (.v)

All circuit (module) must have a testbench (tb)3.
tb is a also module (so, separate file)
RULE: All module MUST have a testbench
RULE: Tb name === module name + _tb

Use Verilog95 module declaration4.
Port list contain names only (separate input/output declaration)
Port connection(s) MUST BE specified using ordered list
RULE: Port connection(s) by ordered list ONLY!

Modules for combinational logic should only use wire/assign statements5.

https://en.wikipedia.org/wiki/Takahashi_method

2026/02/02 16:44 3/7 NMK206 - Computer Architecture

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

reg/always reserved for sequential logic and testbench modules
RULE: comb. logic use assign/wire only!

Only basic logic gates are allowed6.
Can only use AND/OR/INV in your logic implementation
XOR logic is allowed for lab project only
RULE: allowed operators AND, OR, INV

Assign statements can only have ONE binary operator7.
Multiple bitwise inverts (~) are ok (they are unary operators)
RULE: 2-input logic gates ONLY

ALL nets (wire/reg) MUST BE declared.8.
some compiler may allow using without declaration
for my assessments, they MUST BE declared
RULE: All signals @wire must be declared!

Lab Code (202425s2) Archive

Complete template for a simple 4-bit processor core (as discussed during class) available

here
.

Lab Code (202425s2) Extra

Here is an example code to utilize the carry/borrow signals of our add/subtract modules at ALU level.
You may use this to create add-with-carry and subtract-with-borrow functions (hint: you need a
selector signal to 'enable' the carry/borrow in signals {iC} and {iB}).

alu_flag_4b.v

module alu_4b (iS,iP,iQ,iF,oF,oY);
input[1:0] iS;
input[3:0] iP,iQ,iF;
output[3:0] oF,oY;
wire[3:0] oY;
wire iC, iB, oC,oB;

wire[3:0] tA0, tA1;
wire[3:0] tL0, tL1;

add_4b a_add (iC,iP,iQ,oC,tA0);
sub_4b a_sub (iB,iP,iQ,oB,tA1);
and_4b l_and (iP,iQ,tL0);
or_4b l_or (iP,iQ,tL1);

// separate flag bits for borrow and carry
assign oF = { 2'b00 , oB, oC };
// should get from same bit position
assign iB = iF[1];
assign iC = iF[0];

http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:nmk206:nmk206-upcore_20250527.zip
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:nmk206&codeblock=0

Last update: 2025/06/18 08:23 archive:nmk206 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206221

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 16:44

dmux41 sel0 (iS,tA0,tA1,tL0,tL1,oY);

endmodule

alu_flag_4b_tb.v

module alu_4b_tb ();
reg[1:0] dS;
reg[3:0] dP,dQ,dF;
wire[3:0] mF,mY;
reg[3:0] cF,cY;

integer loop, ecnt;

initial begin
 ecnt = 0;
 // TASK: try to put dS assignment in a loop! => shorter code!
 dS = 2'b00; // test add
 for (loop=0;loop<512;loop++) begin
 {dF[0],dP,dQ} = loop;
 #5;
 { cF[0],cY } = dF[0] + dP + dQ;
 if (cY!=mY||cF[0]!==mF[0]) begin
 ecnt = ecnt + 1;
 $display("** Add error
(%x+%x+%x=%x@%x|%x:%x)!",dP,dQ,dF[0],mY,cY,
 mF[0],cF[0]);
 end
 end
 dS = 2'b01; // test sub
 for (loop=0;loop<512;loop++) begin
 {dF[1],dP,dQ} = loop;
 #5;
 { cF[1],cY } = dP - dQ - dF[1];
 if (cY!=mY||cF[1]!==mF[1]) begin
 ecnt = ecnt + 1;
 $display("** Sub error (%x-%x-%x=%x@%x)!",dP,dQ,dF[1],mY,cY,
 mF[1],cF[1]);
 end
 end
 dS = 2'b10; // test and
 for (loop=0;loop<256;loop++) begin
 {dP,dQ} = loop;
 #5;
 cY = dP & dQ;
 if (cY!=mY) begin
 ecnt = ecnt + 1;
 $display("** And error (%x&%x=%x@%x)!",dP,dQ,mY,cY);
 end

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:nmk206&codeblock=1

2026/02/02 16:44 5/7 NMK206 - Computer Architecture

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

 end
 dS = 2'b11; // test or
 for (loop=0;loop<256;loop++) begin
 {dP,dQ} = loop;
 #5;
 cY = dP | dQ;
 if (cY!=mY) begin
 ecnt = ecnt + 1;
 $display("** Or error (%x|%x=%x@%x)!",dP,dQ,mY,cY);
 end
 end
 if (ecnt==0) begin
 $display("-- Module alu_4b verified!");
 end
 else begin
 $display("** Module alu_4b with %g error(s)!",ecnt);
 end
end

alu_4b dut (dS,dP,dQ,dF,mF,mY);

endmodule

Lab Project (202425s2) Requirements

This is also shared in Google Doc format (link available in Google Classroom).

nmk206-202425s2_labproject.txt

LAB PROJECT

You are required to implement a soft-processor core (HDL-based) with
the
following minimum requirements:
 - 8-bit microprocessor (instruction size, register size, etc.)
 - 8 general purpose registers
 - 8 ALU functions
 - basic instruction set
 = move data between registers
 = perform basic ALU operations
 = load register with immediate value

These requirements are necessary for submission and minimum grade B.
More functionality means better grades:
 - 16-bit/32-bit microprocessor
 - carry circuit for adder (>8b)

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:nmk206&codeblock=2

Last update: 2025/06/18 08:23 archive:nmk206 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206221

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 16:44

 - integer multiply/divide circuit (structural code - NOT behavior)
 - bit-level manipulation (towards microcontroller)
 - instruction fetch unit and memory interface

Note#1: Auto-0 for downloaded codes!

Note#2: This is a group assignment, but marks will be evaluated
individually.

Assessment deliverables:

1) Verilog source files in a single ZIP file
- make sure only Verilog files are included in the file
- make sure all modules have each a proper testbench
- must be self-checking testbenches

2) Technical Document (Specifications)
- not more than 10 pages, no cover page (only list of members' names)
- content:
 = short summary of features
 = block diagram of design
 = list of instructions (description and op-code)

3) An online demonstration / Q&A
- not more than 20 minutes
- content:
 = short summary of what has been implemented
 = if completed, demonstrate running the top-level testbench
 = if NOT completed, demonstrate running component-level testbenches

PROJECT DUE: Lab Session@W14/14 (Item 1&2). Item 3 TBD.

Extra Info:
- each student may email in a contribution percentage information:
 = list all group members (specify project contribution percentage of
each)
 = percentage values should total up to 100% (may use fraction e.g.
1/3)
Note: this is optional,but if a member decides to do this, please
advise
the others in group to do the same

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206221

Last update: 2025/06/18 08:23

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:nmk206&rev=1750206221

2026/02/02 16:44 7/7 NMK206 - Computer Architecture

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

	NMK206 - Computer Architecture
	Announcements
	Lab Session
	Verilog Coding Rule
	Lab Code (202425s2) Archive
	Lab Code (202425s2) Extra
	Lab Project (202425s2) Requirements

