Lab Work 2 (Part 2)

Adders and Comparators

One of the most useful combinational logic circuit is an adder. It is the core component of any Arithmetic Unit - used in binary multipliers and even floating-point arithmetic units. Meanwhile, a comparator is useful as a decision making circuitry - it usually compares the magnitude of two binary values.

Half-Adder

A half-adder sums two 1-bit values and provides two 1-bit values (sum and carry).

Disclaimer: The images above are extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)

Full-Adder

A full-adder sums three 1-bit values and provides two 1-bit values (sum and carry).

		F	ull-Adder					
	ç	Symbol			Т	ruth ⁻	Table	
		Σ		TAE Full-	BLE 6-2 adder tr	2 ruth table.		
	A			A	В	Cin	Cout	Σ
		Σ	—— Sum	0	0	0 1 0	0	0 1
bits	R			0	1 0	1	1	0
		Court	—— Output carry	1	0	1 0	1	0
Input carry —	$C_{\rm in}$	out	1 7	$\frac{1}{C_{\text{in}}} = \frac{1}{C_{\text{out}}} = \frac{1}{\Sigma} = \frac{1}{A \text{ and}}$	= input ca $= output$ sum $I B = inp$	l urry, sometim carry, somet put variables	l les designated imes designate (operands)	as CI ed as CO

Disclaimer: The images above are extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)

Comparator

There are three possible output bits of a comparator (depending on application requirement): equality (==), less than (<) and greater than (>).

Comparator Output	Description				
EQ (==)	Output is at logic HI when the first value is exactly the same as the second value				
LT (<)	Output is at logic HI when the first value is less than the second value				
GT (>)	Output is at logic HI when the first value is greater then the second value				

Truth Table for a 1-bit Comparator:

A	В	EQ	LT	GT
0	0	1	0	0
0	1	0	1	0
1	0	0	0	1
1	1	1	0	0

Note: A 2-bit comparator cannot be built by simply cascading two 1-bit logic circuits.

Things To Do

THING 1 Build a 1-bit half-adder circuit and verify.

THING 2 Build a 1-bit full-adder circuit using 2×1-bit half-adders. Verify. *Trivia: What is the least number of ICs (of 2-input logic gates) needed to implement this?*

THING 3 (Optional?) Build a 2-bit adder and verify.

THING 4 (Optional?) Construct a truth table for 1-bit subtractor. Build the circuit and verify.

THING 5 (Optional?) Build a 4-bit ripple carry adder and verify.

THING 6 (Optional?) Build a 4-bit carry look ahead (CLA) adder and verify.

THING 7 Construct a truth table for 2-bit comparator (3 outputs). Get the Boolean expression for each output. Build the circuit and verify.

THING 8 (Optional?) Build a 4-bit comparator (3 outputs) and verify.

ask your instructor for more...

From: http://azman.unimap.edu.my/dokuwiki/ - **Azman @UniMAP**

Permanent link: http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt104lab01b

Last update: 2020/09/13 18:58