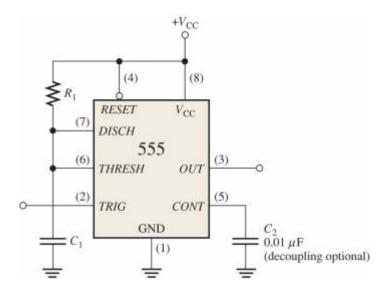

2025/10/03 00:18 1/5 Lab Work 3 (Part 2)

Lab Work 3 (Part 2)

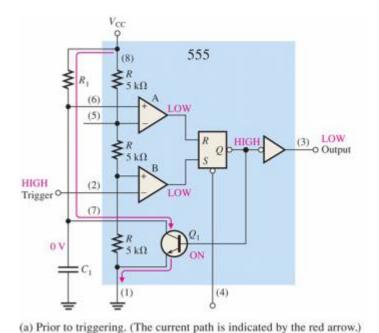
One-Shots and Oscillators

We will be using the versatile 555 timer as both a monostable multivibrator (one-shot) and an astable multivibrator (oscillator). The internals of a 555 IC is shown below.



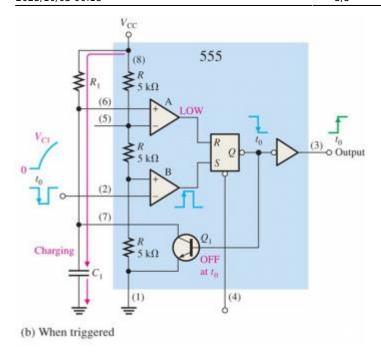
Disclaimer: The image above is extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)

The main internal components of a 555 timer are 2 voltage comparators that are configured by a voltage divider circuit that provides a trigger value of $\frac{1}{3}V_{cc}$ and a threshold value of $\frac{2}{3}V_{cc}$. These values can be externally adjusted using the control voltage pin (5).

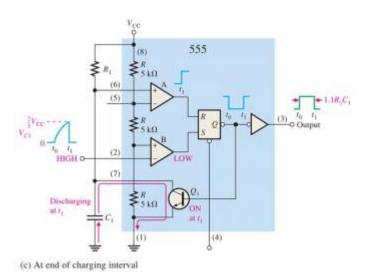

555 One-shot Operation

We just need a resistor and a capacitor for this (an extra decoupling capacitor is optional).

Disclaimer: The image above is extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)


Initially, the circuit will settle down to its stable state.

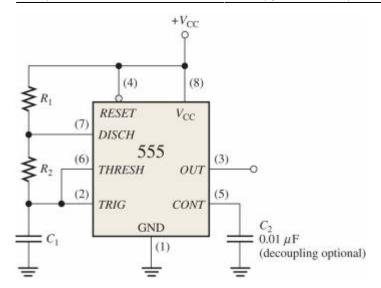
Disclaimer: The image above is extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)


When triggered, it will set the internal R-S latch, which consequently enables the circuit to charge the capacitor.

2025/10/03 00:18 3/5 Lab Work 3 (Part 2)

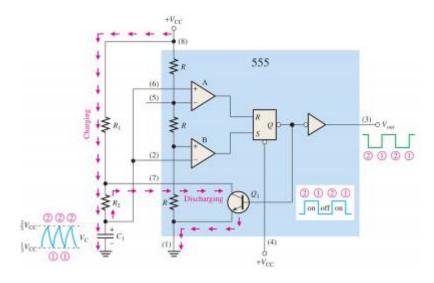
Disclaimer: The image above is extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)

Once the capacitor is fully charged (actually, once the voltage is over threshold) and the trigger signal is deasserted, comparator A should cause the latch to reset and consequently cause the discharging of the capacitor.



Disclaimer: The image above is extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)

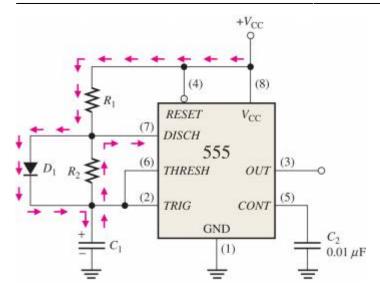
Notice that the pulse width generated at the output pin should be around $t_w\!=\!1.1R_1C_1$


555 Oscillator Operation

This time we need an extra resistor.

Disclaimer: The image above is extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)

This is how the the oscillator works - the capacitor is charged through the two resistors (R_1 and R_2) when the internal transistor Q_1 is off, and discharged through R_2 when transistor Q_1 is on.



Disclaimer: The image above is extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)

The frequency of the generated signal at the output pin should be $f = \frac{1.44}{\left(R_1 + 2R_2\right)} C_1$. The time that the output is at V_{CC} should be $t_H = 0.7 \left(R_1 + R_2\right) C_1$, while the time for the output to be at GND should be $t_L = 0.7 R_2 C_1$. Thus, the duty cycle is given by $\left(\frac{R_1 + R_2}{R_1 + 2R_2}\right) 100\%$.

To get a duty cycle of less than 50%, we need a diode in order to bypass R_2 when charging the capacitor.

2025/10/03 00:18 5/5 Lab Work 3 (Part 2)

Disclaimer: The image above is extracted from resources available for Digital Fundamentals 11th Edition (Global Edition)

Thus, the duty cycle is now given by $\binom{R_1}{R_1+R_2}100\%$.

Things To Do

THING1 Build a one-shot circuit that produces 1ms pulse. Determine a suitable R & C values. Verify.

THING2 Build an oscillator circuit that produces 1kHz (50% duty cycle) square-wave signal. Verify.

THING3 (Optional) Build an oscillator circuit that produces 50Hz signal, and $^t{H}^{=1ms}$. Verify.

From:

http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:

http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt104lab02b

Last update: 2020/09/13 19:01

