2026/02/02 15:01 1/20 Lab Work 2 - Processes and Threads

Lab Work 2 - Processes and Threads

In this module we will learn about processes and threads - basic concept of code execution by an OS
in a computer system.

Process: Introduction

A process is essentially a computer program being executed (a.k.a. 'running') on a computer
hardware. In this exercise, we will look at how a process can be created and controlled. The codes in
this section are specific to Linux platform and cannot be used on a Windows platform. There are
equivalent functions in the Win32 API that can be used to achieve the same goal but they will NOT be
discussed here.

Notes

Executing a process is also known as 'running' a program code. A shell (terminal or console or
command prompt on Win32) is also a process that is started by another process in the Operating
System (0OS). When we type a program name at the shell prompt (i.e. execute a process), the shell
actually creates a child process, and put the program in the newly created process space and initiate
its code execution. The first step we need to understand is how a process can create another process.

Process Creation

On Linux, the function that enables us to create a process is called fork. The prototype is
pid t fork(void);

which is declared in unistd. h. It basically duplicates the current process and the return value will
indicate which process the code belongs to.

Simple Fork

A simple example:

smith.c

#include <unistd.h>
#include <stdio.h>
int main(int argc, char *argv

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=1

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

pid t smith = fork
printf("I am Agent Smith %d (%d)\n",6getpid smith

Using the program from movie 'The Matrix', the above code will duplicate itself, with both copies

o0
introducing themselves and exiting gracefully (of course, this is not the case in the movie &) you
should note that pid t is a data type defined to represent process ID (an integer value assigned by
the operating system to all running processes). The introduction text includes 2 integers - the first is
the process ID for the running process and the second is the value returned by fork.

If the example given above is executed, the output should be something like:

user@localhost:~$ smith
I am Agent Smith 5539 (5540)
I am Agent Smith 5540 (0)

The first line is 'printed' by the original process while the second line is 'printed' by the created
process. This is indicated by the return value (assigned to local variable smith) - a value of 0 means
that the process is the newly created process, while the original process will get the process ID for the
newly created process. The fact that the two processes prints different value for the local variable
smith also shows that the processes have separate address space.

To clarify this, let us modify the code further to check the address for the local variable smith:

smith.c

#include <unistd.h>
#include <stdio.h>
int main(int argc, char *argv

pid t smith = fork
printf("I am Agent Smith %d @%p (%d)\n",6 getpid smith,smith

Now, the output is something like:

user@localhost:~$ smith
I am Agent Smith 2698 @ox7fff7e6f81ldc (2699)
I am Agent Smith 2699 @Ox7fff7e6f8ldc (0O)

Notice that even the local variable have the exact same address, the value is still different. This is
because that address is actually a virtual address (will be covered in subsequent topic).

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=3
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 15:01 3/20 Lab Work 2 - Processes and Threads

Parent Child Fork

All processes created this way are usually called the child processes of the original process. Naturally,
the original process is known as the parent process of the newly created process. To make the code
reflect this scenario, let us rewrite into

family.c

#include <unistd.h>
#include <stdio.h>
int main(int argc, char *argv

pid t child = fork
child

printf("I am a child %d with parent %d\n",6 getpid getppid

printf("I am a parent %d with child %d\n",6 getpid child

Now, the output should be something like:

user@localhost:~$ family
I am a parent 6666 with child 6667
I am a child 6667 with parent 6666

Multiple Forks

Let us try to breed more child processes based on user request in command line parameter:

breed.c

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <wait.h>

#include <sys/types.h>

int main(int argc, char *argv

pid t child
int loop, count, check, status
/* must have exactly ONE parameter */

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=5
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=7

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

argc

printf("Usage: '%s' <count>\n",6argv

/* get count from command line */
count = atoilargv
count

printf("No child required? Abort!\n"

/* loop to create child */
loop loop=count; Loop

child fork
child

child = getpid

printf("I am a child %d\n",child
status child

break

waitpid(child, &check
WIFEXITED (check
printf("Child ended with %d\n" éWEXITSTATUS(check
/** note: WEXITSTATUS grabs just the LSByte */

/* parent text here! */
status

printf("I am a parent - just created %d sub-
process(es)\n", count

status

Please spend some time and try to understand the code. This can easily be the basis for your lab
exercises in this topic. Now that we know how to create processes, let us try to find a way to control
the created processes in order to make it more useful.

Process Control

This is actually part of Inter-Process Communication (IPC) sub-topic but | prefer to cover this as

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/atoi.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 15:01 5/20 Lab Work 2 - Processes and Threads

process control mechanism - showing how the processes can send small amount of information
(control signal) between one another. On Linux, there are a few methods that can be used to achieve
this: signals, pipes, files, shared memory and sockets. We are going to use only two methods in this
course - signals and files.

Using Signals

Using signals takes advantage of a system's interrupt facility. The easiest way to implement signals is
to use the signal (duh!) function declared in signal.h. Example:

ctrisig.c

#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

int flag SIGUSR1
int flag SIGUSR2

void signal handler(int signum
signum

SIGUSR1

flag SIGUSR1
flag SIGUSR2
break

SIGUSR2

flag SIGUSR1
flag SIGUSR2
break

/** other signals are ignored? */

int main(int argc, char *argv

pid t child
signal (SIGUSR1,signal handler)==SIG ERR

printf("Cannot set handler for SIGUSR1\n"
exit

signal (SIGUSR2,signal handler)==SIG ERR

printf("Cannot set handler for SIGUSR2\n"
exit

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=8
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

child=fork 0

/** child stuff - wait for parent */

printf("[Child-%d] Waiting for parent... ", 6getpid
flag SIGUSR1); /* wait for parent signal */
printf("YES!

(flagl=%d) (flag2=%d)\n",6 flag SIGUSR1, flag SIGUSR2
/** child stuff - send ack to parent */
printf("[Child-%d] Sending acknowledgement to
parent.\n",6 getpid
kill(getppid(),6SIGUSR1
/** child stuff - wait for parent */

printf("[Child-%d] Waiting for parent... ",6getpid
flag SIGUSR2); /* wait for parent signal */
printf("YES!

(flagl=%d) (flag2=%d)\n", flag SIGUSR1, flag SIGUSR2
/** child stuff - send ack to parent */
printf("[Child-%d] Sending acknowledgement to
parent.\n", getpid
kill(getppid(),6 SIGUSR2

/** parent stuff - send 'command' to child */
printf("[Parent-%d] Sending 'command' to child.\n",6getpid
kill(child, SIGUSR1

/** parent stuff - wait for child */

printf("[Parent-%d] Waiting for child response... ",6 getpid
flag SIGUSR1); /* wait for child signal */
printf("YES!

(flagl=%d) (flag2=%d)\n",6 flag SIGUSR1, flag SIGUSR2
/** parent stuff - send 'command' to child */
printf("[Parent-%d] Sending 'command' to child.\n",6getpid
kill(child, SIGUSR2
/** parent stuff - wait for child */

printf("[Parent-%d] Waiting for child response... ",6 getpid
flag SIGUSR2); /* wait for child signal */
printf("YES!

(flagl=%d) (flag2=%d)\n", flag SIGUSR1, flag SIGUSR2

printf("[%d] Done\n",6 getpid
0

However, the implementation of signal function (ANSI C specification) varies even across versions of
Linux (and UNIX) and therefore not recommended for practical use. The recommended function for
this purpose is sigaction, but this is left for you to explore.

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 15:01 7/20 Lab Work 2 - Processes and Threads

Using Files

The above example can be rewritten to use file-based control:

ctrifile.c

#include <unistd.h>
#include <stdio.h>

#define PARENT FLAG1l "PFLAG1"
#define PARENT FLAG2 "PFLAG2"
#define CHILD FLAG1 "CFLAG1"
#define CHILD FLAG2 "CFLAG2"

void wait flag(char *“pname

FILE “pfile = 0x0
pfile) pfile = fopen(pname, "r"
fclose(pfile

void send flag(char *pname

FILE ‘pfile = fopen(pname, "w"
pfile) fclose(pfile

void hide flag(char *pname

remove (pname); /* actually deletes the flag file! */

int main(int argc, char *argv

pid t child
child=fork 0

/** child stuff - wait for parent */

printf("[Child-%d] Waiting for parent... ", 6getpid

wait flag(PARENT FLAGl); /* wait for parent signal */

printf("YES!\n"

/** child stuff - send ack to parent */

printf("[Child-%d] Sending acknowledgement to
parent.\n",6 getpid

send flag(CHILD FLAG1

/** child stuff - wait for parent */

printf("[Child-%d] Waiting for parent... ",6getpid

wait_ flag(PARENT_FLAG2); /* wait for parent signal */

printf("YES!\n"

/** child stuff - send ack to parent */

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=9
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/remove.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

printf("[Child-%d] Sending acknowledgement to
parent.\n", getpid
send flag(CHILD FLAG2

/** parent stuff - send 'command' to child */
printf("[Parent-%d] Sending 'command' to child.\n", getpid
send flag(PARENT FLAG1

/** parent stuff - wait for child */

printf("[Parent-%d] Waiting for child response... ",6 getpid
wait flag(CHILD FLAGl); /* wait for child signal */
printf("YES!\n"

/** parent stuff - cleanup! */

hide flag(PARENT FLAG1

hide flag(CHILD FLAGl); /** should be done by child? */
/** parent stuff - send 'command' to child */
printf("[Parent-%d] Sending 'command' to child.\n",6getpid
send flag(PARENT FLAG2

/** parent stuff - wait for child */

printf("[Parent-%d] Waiting for child response... ", 6 getpid
wait flag(CHILD FLAG2); /* wait for child signal */
printf("YES!\n"

/** parent stuff - cleanup! */

hide flag(PARENT FLAG2

hide flag(CHILD FLAG2); /** should be done by child? */

printf("[%d] Done\n",6 getpid
0

Messaging with Files

The advantage of having file-based communication is we can send more than just 'signals’ - we can
now send sizable data. Given a set of source files to form a project for file-based communication -
starting with the main source:

fmsg.c

#include <unistd.h>
#include <stdio.h>

/2
_______ */

#include "fmsglib.h"
2
_______ */

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=10

2026/02/02 15:01 9/20 Lab Work 2 - Processes and Threads

#define DATAFILE "message.txt"
#define WFLAG "WRITEDONE"
#define RFLAG "READDONE"

int main(int argc, char *argv
fork 0

/** child stuff */
char child msg!MSG SIZE MAX
check flag(WFLAG
read message (DATAFILE,child msg,MSG SIZE MAX
child msg[MSG SIZE MAX-1|-=0x0
printf("[Child-%d] MsgRead: %s\n",6 getpid child msg
setup flag(RFLAG
check flag(WFLAG
clear_flag(RFLAG

/** parent stuff */
char parent msg “T AM LEGEND!"
write message(DATAFILE, parent msg
printf("[Parent-%d] MsgWrite: %s\n",6getpid parent msg
setup flag(WFLAG
check flag(RFLAG
clear_ flag(WFLAG
clear flag(DATAFILE

printf("[%d] Done\n",6 getpid

Notice that no error checking has been done for the flag and message management functions. This is
left as an exercise for you. Next, let us take a look at the 'library' source:

fmsglib.c
/* ___
_______ */
#include "fmsglib.h"
/* ___
_______ */
#include <stdio.h>
/* ___
_______ */

int check flag(char *pname

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=11

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

int status FLAG EXISTS
FILE *pfile fopen(pname, "r"
pfile) fclose(pfile
status FLAG MISSING
status

int clear flag(char *pname
int status remove (pname
status

status FLAG_UNTOUCHED
status

int setup flag(char *pname

int status check flag(pname
status==FLAG MISSING

FILE “pfile = fopen(pname, "wt"

pfile) fclose(pfile
status = FLAG SETFAILED

status FLAG SETEXISTS

status

int write message(char “pname, char *message

int status = MSG WRITE SUCCESS
FILE ‘pfile = fopen(pname, "wt"
pfile

fprintf(pfile, message
fclose(pfile

status MSG_WRITE FAILED
status

int read message(char “pname, char *‘message, int size

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/remove.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fprintf.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html

2026/02/02 15:01 11/20 Lab Work 2 - Processes and Threads

int status = MSG_READ SUCCESS
FILE ‘pfile = fopen(pname,6 "rt"
if(pfile

int loop = 0O, test
while((test=fgetc(pfile EOF

message | Loop char) test
17 (loop>=size-1

status MSG READ OVERFLOW
break

fclose(pfile
message| lLoop 0x0

else status MSG_READ FAILED
return status

The functions are pretty straight forward, using file access functions available in stdio.h. Notice that
it uses a few constants that is defined in the header file:

fmsglib.h

#ifndef CMSGLIBH
#define = CMSGLIBH

/** <function> flag return values */
#define FLAG EXISTS 0

#define FLAG MISSING -1

#define FLAG CLEARED 0

#define FLAG UNTOUCHED -2

#define FLAG SETUP 0

#define FLAG SETEXISTS -3

#define FLAG SETFAILED -4

/** message size limit */
#define MSG SIZE MAX 80

/** message write status */
#define MSG WRITE SUCCESS 0
#define MSG WRITE FAILED -1
/** message read status */

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fgetc.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=12

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

#define MSG READ SUCCESS 0
#define MSG READ FAILED -1
#define MSG READ OVERFLOW -2

int check flag(char *pname

int clear flag(char *pname

int setup flag(char *pname

int write message(char “pname, char *message

int read message(char *‘pname, char *‘message, int size

/* ___
_______ */

#endif
/23N
_______ */

Finally, a makefile to help manage build:

makefile

makefile to compile a ¢ program
PROJECT = fmsg
OBJECTS = fmsglib.o & (PROJECT) .o

CcC gcc
CFLAGS
LDFLAGS
PROJECT OBJECTS
CcC CFLAGS 0 $@ $+ LDFLAGS
(0] C h
CcC CFLAGS c $<
(o] C
CcC CFLAGS c $<
clean

rm -rf PROJECT 0

As with the previous 'long' code, spend some time to understand them. Try them out and modify
them to test your knowledge.

Process: Things to Tinker

Thing 1 Write a program that create 5 separate child processes that executes in parallel (the
example above creates a child process and wait for it to finish before creating another child). Each
child waits for a random number of seconds (between 10 to 20) before exiting. The program must be
able to detect all its child processes have finished before exiting.

Thing 2 Write a program that manages the listing, creation, deletion of child processes. Thus, when a

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=13

2026/02/02 15:01 13/20 Lab Work 2 - Processes and Threads

child process is created, it should simply hang around until being told to quit (delete process). The
listing of child processes should include information of its process ID and, optionally, its running time.

Thread: Introduction

Threads are parts of a running program that can be made to execute as if they are done in parallel. In
this exercise, we will look at how a thread can be created and controlled. The codes in this section are
specific to Linux platform and cannot be used on a Windows platform. There are equivalent functions
in the Win32 API that can be used to achieve the same goal but they will NOT be discussed here.

Notes

The main difference between a thread and a process is the allocated address space. Unlike a process,
a newly created thread shares the same address space as its parent (main thread). This is about as
far as the difference goes because other than that, they are actually created to achieve the same
thing - multitasking. In fact, in some operating systems like Linux, they are even treated/handled the
same way.

The threads facility on Linux is implemented by an external POSIX threads (pthread) library and needs
to be linked. So, remember to include the -pthread switch when linking codes using the threads
facility.

Thread Creation

On Linux, the function that enables us to create a thread is called pthread create. The prototype is

int pthread create(pthread t *restrict thread, const pthread attr t
*restrict attr,
void *(*start routine) (void*), void *restrict arg);

which is declared in pthread. h. It will return a value of 0 upon success (non-zero error number
otherwise). You may want to read the man page (man pthread create) to get information on the
arguments.

In short, this function creates a thread (a task on Linux) with attributes specified in attr (default
attributes will be used if this is NULL). If everything goes well, it will store the ID of the thread in
thread and starts execution at the function pointed by start routine with a single argument arg.
The argument arg is actually very useful when you need to pass data structure to the newly created
thread.

Simple Thread

A simple example that is equivalent to the code in Simple Fork:

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

smith_thread.c

#include <stdio.h>
#include <pthread.h>

static int check
void* go_smith(void* arg
arg
pthread t “psmith pthread t*) arg
printf("I am Agent Smith %x @%p (%d)\n", *psmith,&check, check

check
pthread exit

printf("I am Agent Smith 0 @%p (%d)\n",&check, check

Ox0

int main(int argc, char *argv

pthread t smith

check

pthread create(&smith,0x0,4g0 smith, &smith
pthread join(smith, Ox0

go _smith(0Ox0

The output will be something like:

user@localhost:~$ smith_ thread
I am Agent Smith 58956700 @0x600c80 (1)
I am Agent Smith 0 @Ox600c80 (2)

Notice that when the global variable check is changed in the thread (check = 2;), this value is what
gets printed out by the main thread. This shows that threads share the same address space as the
main thread (notice that no parent-child concept here). You should note that pthread joinis
equivalent to waitpid used earlier.

Thread vs Process

smith_thread.c

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=15
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=17

2026/02/02 15:01 15/20 Lab Work 2 - Processes and Threads

#include <stdio.h>
#include <pthread.h>

/* do not need stdlib.h */
/* do not need wait.h */

/* declare a global variable */
static int check = 0

/* function to be executed by created thread */
void* go smith(void* arg

pthread t “psmith pthread t*) arg

check

printf("I am Agent Smith %u @%p
(%d)\n", (unsigned) “psmith, &check, check

pthread exit(0

int main(int argc, char *argv

pthread t smith
check
pthread create(&smith,0x0,&g0 smith, &smith
pthread join(smith,0x0); /* wait for create thread to finish */
printf("I am Agent Smith 0 @%p (%d)\n", &check, check
0

smith_process.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <wait.h>

/* declare a global variable */
static int check = 0

/* function to be executed by created process */
void* go smith(void* arg

pid t “psmith pid t*) arg

check

printf("I am Agent Smith %u @%p
(%sd)\n", (unsigned) *psmith, &check, check

exit(0

int main(int argc, char *argv

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=18
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

pid t smith
check
fork smith = getpid go_smith(&smith
waitpid(smith, Ox0 /* wait for create process to finish */

printf("I am Agent Smith 0 @%p (%d)\n",&check, check

Thread Control

This is actually much simpler due to the fact that threads share the same address space. But this also
introduces race issues - what is the correct sequence when two threads are trying to access the same
address? Therefore, a special flag is required to ensure only one thread can access a common
address memory at one time, which will validate proper sequence of code. The flag is know as a
MUTEX (MUTual EXclusive) and in the pthread library, it can be declared and initialized as follows:

pthread mutex t shared region = PTHREAD MUTEX INITIALIZER;

PTHREAD MUTEX INITIALIZER is actually a macro that initializes a statically allocated mutex with
default attributes.

The actual functions used to initialize and destroy a mutex are:
int pthread mutex init(pthread mutex t *restrict mutex, const
pthread mutexattr t *restrict attr);

int pthread mutex destroy(pthread mutex t *mutex);

Whenever a thread requires access to the common address memory, it needs to request a lock on the
mutex object using:

pthread mutex lock(&shared region);

If the mutex is already locked by another thread, this function will block execution until it can get an
exclusive lock. Of course, this means that all threads should be responsible enough to unlock the
mutex once it is done:

pthread mutex unlock(&shared region);

Multiple Threads

An example to show the use of mutexes:

parallel.c

#include <stdio.h>

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01&codeblock=23

2026/02/02 15:01 17/20 Lab Work 2 - Processes and Threads

#include <stdlib.h>
#include <pthread.h>

/* statically allocated mutex initialization */
pthread mutex t shared region PTHREAD MUTEX INITIALIZER
static int active = 0

typedef struct thread data

pthread t thread id
int thread index
int thread pause
int thread exec

int thread wait

int thread run

thread data

#include <unistd.h> /* STDIN FILENO */
#include <termios.h> /* struct termios */
#define MASK LFLAG (ICANON|ECHO|ECHOE|ISIG)

int getch(void

struct termios oldt, newt

int ch

tcgetattr(STDIN FILENO, &coldt
newt = oldt

newt.c lflag ~MASK LFLAG

tcsetattr(STDIN FILENO, TCSANOW, &newt

ch = getchar

tcsetattr(STDIN FILENO, TCSANOW, &oldt
ch

void* thread exec(void* arg
arg
thread data “pdata thread data*®) arg
pdata->thread run = 1

pdata->thread exec

pdata->thread pause
pdata->thread run
printf("[Thread-%d] Thread

Paused!\n" pdata->thread index
pdata->thread run = 0

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/getch.html
http://www.opengroup.org/onlinepubs/009695399/functions/getchar.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

pdata->thread run

printf("[Thread-%d] Thread
Resumes\n",h pdata->thread index
pdata->thread run = 1

printf("[Thread-%d] Sleeping %d
seconds\n", pdata->thread index

pdata->thread wait

sleep(pdata->thread wait

/* something happened while you were sleeping */
pdata->thread exec) break

pthread mutex lock(&shared region

printf("[Thread-%d] Changing active from %d to %d!\n"
pdata->thread index,active,pdata->thread index

active = pdata->thread index

pthread mutex unlock(&shared region

pthread exit(0

0x0

int main(int argc, char *argv

thread data execl, exec2
int not done = 1, test
/* start random number generator */
srand(time(0x0
/** initialize execl */
execl.thread index 1
execl.thread pause 1
execl.thread exec 1
execl.thread wait rand()%10)+1
execl.thread run = 0
pthread create(fexecl.thread id,0x0,&thread exec, (void™) texecl
/** initialize exec2 */
exec2.thread index = 2
exec2.thread pause =1
exec2.thread exec = 1
exec2.thread wait rand()%10)+1
exec2.thread run = 0
pthread create(fexec2.thread id,0x0,&thread exec, (void*) fexec2
/** main loop for main thread */
sleep(1l
printf("[Main] Starting threads execution...\n"
execl.thread pause = 0
exec2.thread pause = 0
not _done

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/srand.html
http://www.opengroup.org/onlinepubs/009695399/functions/time.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 15:01 19/20 Lab Work 2 - Processes and Threads

printf("[Main] <ESC> Exit, <SPACE> Pause/Resume, <R>andomize
Sleep\n"
test=getch

0x1B: /** ASCII ESC */
not done = 0

break
0x20: /** ASCII SPACE */
execl.thread pause execl.thread pause
exec2.thread pause exec2.thread pause
break

int)'R'

printf("[Main] Pause threads execution...\n"

execl.thread pause = 1

exec2.thread pause 1

printf("[Main] Waiting for threads to pause...\n"

execl.thread run||exec2.thread run

printf("[Main] Randomizing Sleep Params...\n"

execl.thread wait rand 10)+1

exec2.thread wait rand()%10)+1

printf("[Main] Waitl=%d, Wait2=%d\n",6execl.thread wait
exec2.thread wait

printf("[Main] Resume threads execution...\n"

execl.thread pause = 0

exec2.thread pause = 0

break

printf("[CHECK]=>'%02X"'\n", test

/* stop threads */
printf("[Main] Stopping threads execution...\n"
execl.thread exec 0
exec2.thread exec 0
/* wait threads to finish */
printf("[Main] Waiting for threads to finish...\n"
pthread join(execl.thread id, 0x0
pthread join(exec2.thread id, 0x0
printf("[Main] Done!\n"
0

Another long one... you know what to do!

Thread: Things to Tinker

Thing1 Modify parallel. c so that the main thread can send a text message for the worker threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/getch.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:24 archive:pgt200lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

o0
to print (or anything that is more interesting W). Hint: You should modify the structure so that it

contains a buffer for message passing.

Thing 2 Write a program that manages the listing, creation, deletion of threads. Thus, when a thread
is created, it should simply hang around until being told to quit (delete thread). The listing of running
threads should include information of its thread ID and, optionally, its running time.

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

Last update: 2020/09/13 17:24

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01

	Lab Work 2 - Processes and Threads
	Process: Introduction
	Notes

	Process Creation
	Simple Fork
	Parent Child Fork
	Multiple Forks

	Process Control
	Using Signals
	Using Files
	Messaging with Files

	Process: Things to Tinker
	Thread: Introduction
	Notes

	Thread Creation
	Simple Thread
	Thread vs Process

	Thread Control
	Multiple Threads

	Thread: Things to Tinker

