
2026/02/02 15:01 1/13 Lab Work 2 (Part 1) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Lab Work 2 (Part 1) - Processes and Threads

Process: Introduction

A process is essentially a computer program being executed (a.k.a. 'running') on a computer
hardware. In this exercise, we will look at how a process can be created and controlled. The codes in
this section are specific to Linux platform and cannot be used on a Windows platform. There are
equivalent functions in the Win32 API that can be used to achieve the same goal but they will NOT be
discussed here.

Notes

Executing a process is also known as 'running' a program code. A shell (terminal or console or
command prompt on Win32) is also a process that is started by another process in the Operating
System (OS). When we type a program name at the shell prompt (i.e. execute a process), the shell
actually creates a child process, and put the program in the newly created process space and initiate
its code execution. The first step we need to understand is how a process can create another process.

Process Creation

On Linux, the function that enables us to create a process is called fork. The prototype is

pid_t fork(void);

which is declared in unistd.h. It basically duplicates the current process and the return value will
indicate which process the code belongs to.

Simple Fork

A simple example:

smith.c

#include <unistd.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
 pid_t smith = fork();
 printf("I am Agent Smith %d (%d)\n",getpid(),smith);
 return 0;

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=1
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

}

Using the program from movie 'The Matrix', the above code will duplicate itself, with both copies

introducing themselves and exiting gracefully (of course, this is not the case in the movie). You
should note that pid_t is a data type defined to represent process ID (an integer value assigned by
the operating system to all running processes). The introduction text includes 2 integers - the first is
the process ID for the running process and the second is the value returned by fork.

If the example given above is executed, the output should be something like:

user@localhost:~$ smith
I am Agent Smith 5539 (5540)
I am Agent Smith 5540 (0)

The first line is 'printed' by the original process while the second line is 'printed' by the created
process. This is indicated by the return value (assigned to local variable smith) - a value of 0 means
that the process is the newly created process, while the original process will get the process ID for the
newly created process. The fact that the two processes prints different value for the local variable
smith also shows that the processes have separate address space.

To clarify this, let us modify the code further to check the address for the local variable smith:

smith.c

#include <unistd.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
 pid_t smith = fork();
 printf("I am Agent Smith %d @%p (%d)\n",getpid(),&smith,smith);
 return 0;
}

Now, the output is something like:

user@localhost:~$ smith
I am Agent Smith 2698 @0x7fff7e6f81dc (2699)
I am Agent Smith 2699 @0x7fff7e6f81dc (0)

Notice that even the local variable have the exact same address, the value is still different. This is
because that address is actually a virtual address (will be covered in subsequent topic).

Parent Child Fork

All processes created this way are usually called the child processes of the original process. Naturally,
the original process is known as the parent process of the newly created process. To make the code

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=3
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 15:01 3/13 Lab Work 2 (Part 1) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

reflect this scenario, let us rewrite into:

family.c

#include <unistd.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
 pid_t child = fork();
 if(child == 0)
 {
 printf("I am a child %d with parent %d\n",getpid(),getppid());
 }
 else
 {
 printf("I am a parent %d with child %d\n",getpid(),child);
 }
 return 0;
}

Now, the output should be something like:

user@localhost:~$ family
I am a parent 6666 with child 6667
I am a child 6667 with parent 6666

Multiple Forks

Let us try to breed more child processes based on user request in command line parameter:

breed.c

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <wait.h>
#include <sys/types.h>
int main(int argc, char *argv[])
{
 pid_t child;
 int loop, count, check, status = 0;
 /* must have exactly ONE parameter */
 if(argc!=2)
 {
 printf("Usage: '%s' <count>\n",argv[0]);
 return -1;
 }
 /* get count from command line */

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=5
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=7
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

 count = atoi(argv[1]);
 if(!count)
 {
 printf("No child required? Abort!\n");
 return -2;
 }
 /* loop to create child */
 for(loop=0;loop<count;loop++)
 {
 child = fork();
 if(child == 0)
 {
 child = getpid();
 printf("I am a child %d\n",child);
 status = child;
 break;
 }
 else
 {
 waitpid(child,&check,0);
 if(WIFEXITED(check))
 printf("Child ended with %d\n",WEXITSTATUS(check));
 /** note: WEXITSTATUS grabs just the LSByte */
 }
 }
 /* parent text here! */
 if(!status)
 {
 printf("I am a parent - just created %d sub-
process(es)\n",count);
 }
 return status;
}

Please spend some time and try to understand the code. This can easily be the basis for your lab
exercises in this topic. Now that we know how to create processes, let us try to find a way to control
the created processes in order to make it more useful.

Process Control

This is actually part of Inter-Process Communication (IPC) sub-topic but I prefer to cover this as
process control mechanism - showing how the processes can send small amount of information
(control signal) between one another. On Linux, there are a few methods that can be used to achieve
this: signals, pipes, files, shared memory and sockets. We are going to use only two methods in this
course - signals and files.

http://www.opengroup.org/onlinepubs/009695399/functions/atoi.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 15:01 5/13 Lab Work 2 (Part 1) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Using Signals

Using signals takes advantage of a system's interrupt facility. The easiest way to implement signals is
to use the signal (duh!) function declared in signal.h. Example:

ctrlsig.c

#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

int flag_SIGUSR1 = 0;
int flag_SIGUSR2 = 0;

void signal_handler(int signum)
{
 switch(signum)
 {
 case SIGUSR1:
 flag_SIGUSR1 = 1;
 flag_SIGUSR2 = 0;
 break;
 case SIGUSR2:
 flag_SIGUSR1 = 0;
 flag_SIGUSR2 = 1;
 break;
 /** other signals are ignored? */
 }
}

int main(int argc, char *argv[])
{
 pid_t child;
 if(signal(SIGUSR1,signal_handler)==SIG_ERR)
 {
 printf("Cannot set handler for SIGUSR1\n");
 exit(1);
 }
 if(signal(SIGUSR2,signal_handler)==SIG_ERR)
 {
 printf("Cannot set handler for SIGUSR2\n");
 exit(1);
 }
 if((child=fork())==0)
 {
 /** child stuff - wait for parent */
 printf("[Child-%d] Waiting for parent... ",getpid());
 while(!flag_SIGUSR1); /* wait for parent signal */
 printf("YES!

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=8
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

(flag1=%d)(flag2=%d)\n",flag_SIGUSR1,flag_SIGUSR2);
 /** child stuff - send ack to parent */
 printf("[Child-%d] Sending acknowledgement to
parent.\n",getpid());
 kill(getppid(),SIGUSR1);
 /** child stuff - wait for parent */
 printf("[Child-%d] Waiting for parent... ",getpid());
 while(!flag_SIGUSR2); /* wait for parent signal */
 printf("YES!
(flag1=%d)(flag2=%d)\n",flag_SIGUSR1,flag_SIGUSR2);
 /** child stuff - send ack to parent */
 printf("[Child-%d] Sending acknowledgement to
parent.\n",getpid());
 kill(getppid(),SIGUSR2);
 }
 else
 {
 /** parent stuff - send 'command' to child */
 printf("[Parent-%d] Sending 'command' to child.\n",getpid());
 kill(child,SIGUSR1);
 /** parent stuff - wait for child */
 printf("[Parent-%d] Waiting for child response... ",getpid());
 while(!flag_SIGUSR1); /* wait for child signal */
 printf("YES!
(flag1=%d)(flag2=%d)\n",flag_SIGUSR1,flag_SIGUSR2);
 /** parent stuff - send 'command' to child */
 printf("[Parent-%d] Sending 'command' to child.\n",getpid());
 kill(child,SIGUSR2);
 /** parent stuff - wait for child */
 printf("[Parent-%d] Waiting for child response... ",getpid());
 while(!flag_SIGUSR2); /* wait for child signal */
 printf("YES!
(flag1=%d)(flag2=%d)\n",flag_SIGUSR1,flag_SIGUSR2);
 }
 printf("[%d] Done\n",getpid());
 return 0;
}

However, the implementation of signal function (ANSI C specification) varies even across versions of
Linux (and UNIX) and therefore not recommended for practical use. The recommended function for
this purpose is sigaction, but this is left for you to explore.

Using Files

The above example can be rewritten to use file-based control:

ctrlfile.c

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=9

2026/02/02 15:01 7/13 Lab Work 2 (Part 1) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

#include <unistd.h>
#include <stdio.h>

#define PARENT_FLAG1 "PFLAG1"
#define PARENT_FLAG2 "PFLAG2"
#define CHILD_FLAG1 "CFLAG1"
#define CHILD_FLAG2 "CFLAG2"

void wait_flag(char *pname)
{
 FILE *pfile = 0x0;
 while(!pfile) pfile = fopen(pname,"r");
 fclose(pfile);
}

void send_flag(char *pname)
{
 FILE *pfile = fopen(pname,"w");
 if(pfile) fclose(pfile);
}

void hide_flag(char *pname)
{
 remove(pname); /* actually deletes the flag file! */
}

int main(int argc, char *argv[])
{
 pid_t child;
 if((child=fork())==0)
 {
 /** child stuff - wait for parent */
 printf("[Child-%d] Waiting for parent... ",getpid());
 wait_flag(PARENT_FLAG1); /* wait for parent signal */
 printf("YES!\n");
 /** child stuff - send ack to parent */
 printf("[Child-%d] Sending acknowledgement to
parent.\n",getpid());
 send_flag(CHILD_FLAG1);
 /** child stuff - wait for parent */
 printf("[Child-%d] Waiting for parent... ",getpid());
 wait_flag(PARENT_FLAG2); /* wait for parent signal */
 printf("YES!\n");
 /** child stuff - send ack to parent */
 printf("[Child-%d] Sending acknowledgement to
parent.\n",getpid());
 send_flag(CHILD_FLAG2);
 }
 else
 {
 /** parent stuff - send 'command' to child */

http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/remove.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

 printf("[Parent-%d] Sending 'command' to child.\n",getpid());
 send_flag(PARENT_FLAG1);
 /** parent stuff - wait for child */
 printf("[Parent-%d] Waiting for child response... ",getpid());
 wait_flag(CHILD_FLAG1); /* wait for child signal */
 printf("YES!\n");
 /** parent stuff - cleanup! */
 hide_flag(PARENT_FLAG1);
 hide_flag(CHILD_FLAG1); /** should be done by child? */
 /** parent stuff - send 'command' to child */
 printf("[Parent-%d] Sending 'command' to child.\n",getpid());
 send_flag(PARENT_FLAG2);
 /** parent stuff - wait for child */
 printf("[Parent-%d] Waiting for child response... ",getpid());
 wait_flag(CHILD_FLAG2); /* wait for child signal */
 printf("YES!\n");
 /** parent stuff - cleanup! */
 hide_flag(PARENT_FLAG2);
 hide_flag(CHILD_FLAG2); /** should be done by child? */
 }
 printf("[%d] Done\n",getpid());
 return 0;
}

Messaging with Files

The advantage of having file-based communication is we can send more than just 'signals' - we can
now send sizable data. Given a set of source files to form a project for file-based communication -
starting with the main source:

fmsg.c

/*---
-------*/
#include <unistd.h>
#include <stdio.h>
/*---
-------*/
#include "fmsglib.h"
/*---
-------*/
#define DATAFILE "message.txt"
#define WFLAG "WRITEDONE"
#define RFLAG "READDONE"
/*---
-------*/
int main(int argc, char *argv[])
{

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=10

2026/02/02 15:01 9/13 Lab Work 2 (Part 1) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

 if(fork() == 0)
 {
 /** child stuff */
 char child_msg[MSG_SIZE_MAX];
 while(check_flag(WFLAG));
 read_message(DATAFILE,child_msg,MSG_SIZE_MAX);
 child_msg[MSG_SIZE_MAX-1]=0x0;
 printf("[Child-%d] MsgRead: %s\n",getpid(),child_msg);
 setup_flag(RFLAG);
 while(!check_flag(WFLAG));
 clear_flag(RFLAG);
 }
 else
 {
 /** parent stuff */
 char parent_msg[] = "I AM LEGEND!";
 write_message(DATAFILE,parent_msg);
 printf("[Parent-%d] MsgWrite: %s\n",getpid(),parent_msg);
 setup_flag(WFLAG);
 while(check_flag(RFLAG));
 clear_flag(WFLAG);
 clear_flag(DATAFILE);
 }
 printf("[%d] Done\n",getpid());
 return 0;
}
/*---
-------*/

Notice that no error checking has been done for the flag and message management functions. This is
left as an exercise for you. Next, let us take a look at the 'library' source:

fmsglib.c

/*---
-------*/
#include "fmsglib.h"
/*---
-------*/
#include <stdio.h>
/*---
-------*/
int check_flag(char *pname)
{
 int status = FLAG_EXISTS;
 FILE *pfile = fopen(pname,"r");
 if(pfile) fclose(pfile);
 else status = FLAG_MISSING;
 return status;
}

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=11
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

/*---
-------*/
int clear_flag(char *pname)
{
 int status = remove(pname);
 if(status<0)
 status = FLAG_UNTOUCHED;
 return status;
}
/*---
-------*/
int setup_flag(char *pname)
{
 int status = check_flag(pname);
 if(status==FLAG_MISSING)
 {
 FILE *pfile = fopen(pname,"wt");
 if(pfile) fclose(pfile);
 else status = FLAG_SETFAILED;
 }
 else
 {
 status = FLAG_SETEXISTS;
 }
 return status;
}
/*---
-------*/
int write_message(char *pname, char *message)
{
 int status = MSG_WRITE_SUCCESS;
 FILE *pfile = fopen(pname,"wt");
 if(pfile)
 {
 fprintf(pfile,message);
 fclose(pfile);
 }
 else status = MSG_WRITE_FAILED;
 return status;
}
/*---
-------*/
int read_message(char *pname, char *message, int size)
{
 int status = MSG_READ_SUCCESS;
 FILE *pfile = fopen(pname,"rt");
 if(pfile)
 {
 int loop = 0, test;
 while((test=fgetc(pfile))!=EOF)
 {

http://www.opengroup.org/onlinepubs/009695399/functions/remove.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fprintf.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fgetc.html

2026/02/02 15:01 11/13 Lab Work 2 (Part 1) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

 message[loop++] = (char) test;
 if(loop>=size-1)
 {
 status = MSG_READ_OVERFLOW;
 break;
 }
 }
 fclose(pfile);
 message[loop] = 0x0;
 }
 else status = MSG_READ_FAILED;
 return status;
}
/*---
-------*/

The functions are pretty straight forward, using file access functions available in stdio.h. Notice that
it uses a few constants that is defined in the header file:

fmsglib.h

/*---
-------*/
#ifndef __CMSGLIBH__
#define __CMSGLIBH__
/*---
-------*/
/** <function>_flag return values */
#define FLAG_EXISTS 0
#define FLAG_MISSING -1
#define FLAG_CLEARED 0
#define FLAG_UNTOUCHED -2
#define FLAG_SETUP 0
#define FLAG_SETEXISTS -3
#define FLAG_SETFAILED -4
/*---
-------*/
/** message size limit */
#define MSG_SIZE_MAX 80
/** message write status */
#define MSG_WRITE_SUCCESS 0
#define MSG_WRITE_FAILED -1
/** message read status */
#define MSG_READ_SUCCESS 0
#define MSG_READ_FAILED -1
#define MSG_READ_OVERFLOW -2
/*---
-------*/
int check_flag(char *pname);
int clear_flag(char *pname);

http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=12

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

int setup_flag(char *pname);
int write_message(char *pname, char *message);
int read_message(char *pname, char *message, int size);
/*---
-------*/
#endif
/*---
-------*/

Finally, a makefile to help manage build:

makefile

makefile to compile a c program
PROJECT = fmsg
OBJECTS = fmsglib.o $(PROJECT).o
CC = gcc
CFLAGS =
LDFLAGS =
$(PROJECT): $(OBJECTS)
 $(CC) $(CFLAGS) -o $@ $+ $(LDFLAGS)
%.o: %.c %.h
 $(CC) $(CFLAGS) -c $<
%.o: %.c
 $(CC) $(CFLAGS) -c $<
clean:
 rm -rf $(PROJECT) *.o

As with the previous 'long' code, spend some time to understand them. Try them out and modify
them to test your knowledge.

Process: Things to Tinker

Thing 1 Write a program that create 5 separate child processes that executes in parallel (the
example above creates a child process and wait for it to finish before creating another child). Each
child waits for a random number of seconds (between 10 to 20) before exiting. The program must be
able to detect all its child processes have finished before exiting.

Thing 2 Write a program that manages the listing, creation, deletion of child processes. Thus, when a
child process is created, it should simply hang around until being told to quit (delete process). The
listing of child processes should include information of its process ID and, optionally, its running time.

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=13

2026/02/02 15:01 13/13 Lab Work 2 (Part 1) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

Last update: 2020/09/13 17:25

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

	Lab Work 2 (Part 1) - Processes and Threads
	Process: Introduction
	Notes

	Process Creation
	Simple Fork
	Parent Child Fork
	Multiple Forks

	Process Control
	Using Signals
	Using Files
	Messaging with Files

	Process: Things to Tinker

