2026/02/02 15:01 1/13 Lab Work 2 (Part 1) - Processes and Threads

Lab Work 2 (Part 1) - Processes and Threads

Process: Introduction

A process is essentially a computer program being executed (a.k.a. 'running') on a computer
hardware. In this exercise, we will look at how a process can be created and controlled. The codes in
this section are specific to Linux platform and cannot be used on a Windows platform. There are
equivalent functions in the Win32 API that can be used to achieve the same goal but they will NOT be
discussed here.

Notes

Executing a process is also known as 'running’ a program code. A shell (terminal or console or
command prompt on Win32) is also a process that is started by another process in the Operating
System (0OS). When we type a program name at the shell prompt (i.e. execute a process), the shell
actually creates a child process, and put the program in the newly created process space and initiate
its code execution. The first step we need to understand is how a process can create another process.

Process Creation

On Linux, the function that enables us to create a process is called fork. The prototype is
pid t fork(void);

which is declared in unistd. h. It basically duplicates the current process and the return value will
indicate which process the code belongs to.

Simple Fork

A simple example:

smith.c

#include <unistd.h>
#include <stdio.h>
int main(int argc, char *argv

pid t smith = fork
printf("I am Agent Smith %d (%d)\n",6 getpid smith

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=1
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab0la

Using the program from movie 'The Matrix', the above code will duplicate itself, with both copies

o0
introducing themselves and exiting gracefully (of course, this is not the case in the movie @D). You
should note that pid t is a data type defined to represent process ID (an integer value assigned by
the operating system to all running processes). The introduction text includes 2 integers - the first is
the process ID for the running process and the second is the value returned by fork.

If the example given above is executed, the output should be something like:

user@localhost:~$ smith
I am Agent Smith 5539 (5540)
I am Agent Smith 5540 (0)

The first line is 'printed' by the original process while the second line is 'printed' by the created
process. This is indicated by the return value (assigned to local variable smith) - a value of 0 means
that the process is the newly created process, while the original process will get the process ID for the
newly created process. The fact that the two processes prints different value for the local variable
smith also shows that the processes have separate address space.

To clarify this, let us modify the code further to check the address for the local variable smith:

smith.c

#include <unistd.h>
#include <stdio.h>
int main(int argc, char *argv

pid t smith = fork
printf("I am Agent Smith %d @%p (%d)\n", getpid smith,smith

Now, the output is something like:

user@localhost:~$ smith
I am Agent Smith 2698 @Ox7fff7e6f8ldc (2699)
I am Agent Smith 2699 @0x7fff7e6f8ldc (0)

Notice that even the local variable have the exact same address, the value is still different. This is
because that address is actually a virtual address (will be covered in subsequent topic).

Parent Child Fork

All processes created this way are usually called the child processes of the original process. Naturally,
the original process is known as the parent process of the newly created process. To make the code

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=3
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 15:01 3/13 Lab Work 2 (Part 1) - Processes and Threads

reflect this scenario, let us rewrite into:

family.c
#include <unistd.h>
#include <stdio.h>

int main(int argc, char *argv

pid t child = fork
child 0

printf("I am a child %d with parent %d\n",6 getpid

printf("I am a parent %d with child %d\n", getpid

0

Now, the output should be something like:
user@localhost:~$ family

I am a parent 6666 with child 6667
I am a child 6667 with parent 6666

Multiple Forks

getppid

child

Let us try to breed more child processes based on user request in command line parameter:

breed.c

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <wait.h>

#include <sys/types.h>

int main(int argc, char *argv

pid t child

int loop, count, check, status = 0

/* must have exactly ONE parameter */
argc!=2

[)
%S

printf("Usage:
1

<count>\n",argv|0

/* get count from command line */

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=5
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=7
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab0la

count = atoilargv
count

printf("No child required? Abort!\n"

/* loop to create child */
loop=0; loop=count; Loop

child fork
child

child = getpid

printf("I am a child %d\n",child
status child

break

waitpid(child, &check
WIFEXITED (check
printf("Child ended with %d\n" 6 WEXITSTATUS (check
/** note: WEXITSTATUS grabs just the LSByte */

/* parent text here! */
status

printf("I am a parent - just created %d sub-
process(es)\n", count

status

Please spend some time and try to understand the code. This can easily be the basis for your lab
exercises in this topic. Now that we know how to create processes, let us try to find a way to control
the created processes in order to make it more useful.

Process Control

This is actually part of Inter-Process Communication (IPC) sub-topic but | prefer to cover this as
process control mechanism - showing how the processes can send small amount of information
(control signal) between one another. On Linux, there are a few methods that can be used to achieve
this: signals, pipes, files, shared memory and sockets. We are going to use only two methods in this
course - signals and files.

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/atoi.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 15:01 5/13 Lab Work 2 (Part 1) - Processes and Threads

Using Signals

Using signals takes advantage of a system's interrupt facility. The easiest way to implement signals is
to use the signal (duh!) function declared in signal.h. Example:

ctrlsig.c

#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

int flag SIGUSR1
int flag SIGUSR2

void signal handler(int signum
signum

SIGUSR1

flag SIGUSR1
flag SIGUSR2
break

SIGUSR2

flag SIGUSR1
flag SIGUSR2
break

/** other signals are ignored? */

int main(int argc, char *argv

pid t child
signal (SIGUSR1,signal handler)==SIG ERR

printf("Cannot set handler for SIGUSR1\n"
exit

signal (SIGUSR2,signal handler)==SIG ERR

printf("Cannot set handler for SIGUSR2\n"
exit

child=fork

/** child stuff - wait for parent */

printf("[Child-%d] Waiting for parent... ",6 getpid
flag SIGUSR1); /* wait for parent signal */
printf("YES!

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=8
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab0la

(flagl=%d) (flag2=%d)\n", flag SIGUSR1, flag SIGUSR2
/** child stuff - send ack to parent */
printf("[Child-%d] Sending acknowledgement to
parent.\n",6 getpid
kill(getppid(),6 SIGUSR1
/** child stuff - wait for parent */

printf("[Child-%d] Waiting for parent... ", 6getpid
flag SIGUSR2); /* wait for parent signal */
printf("YES!

(flagl=%d) (flag2=%d)\n", flag SIGUSR1, flag SIGUSR2
/** child stuff - send ack to parent */
printf("[Child-%d] Sending acknowledgement to
parent.\n", getpid
kill(getppid!(),6 SIGUSR2

/** parent stuff - send 'command' to child */

printf("[Parent-%d] Sending 'command' to child.\n", getpid

kill(child, SIGUSR1
/** parent stuff - wait for child */
printf("[Parent-%d] Waiting for child response... "
flag SIGUSR1); /* wait for child signal */
printf("YES!
(flagl=%d) (flag2=%d)\n", flag SIGUSR1, flag SIGUSR2
/** parent stuff - send 'command' to child */

printf("[Parent-%d] Sending 'command' to child.\n",6 getpid

kill(child,6 SIGUSR2
/** parent stuff - wait for child */

printf("[Parent-%d] Waiting for child response... ",6 getpid

flag SIGUSR2); /* wait for child signal */
printf("YES!
(flagl=%d) (flag2=%d)\n", flag SIGUSR1, flag SIGUSR2

printf("[%d] Done\n", 6 getpid
0

However, the implementation of signal function (ANSI C specification) varies even across versions of
Linux (and UNIX) and therefore not recommended for practical use. The recommended function for

this purpose is sigaction, but this is left for you to explore
Using Files

The above example can be rewritten to use file-based control:

ctrifile.c

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=9

2026/02/02 15:01 7/13 Lab Work 2 (Part 1) - Processes and Threads

#include <unistd.h>
#include <stdio.h>

#define PARENT FLAG1l "PFLAG1"
#define PARENT FLAG2 "PFLAG2"
#define CHILD FLAG1l "CFLAG1"
#define CHILD FLAG2 "CFLAG2"

void wait flag(char *pname

FILE ‘pfile = 0Ox0
pfile) pfile = fopen(pname,6 "r"
fclose(pfile

void send flag(char *pname

FILE ‘pfile = fopen(pname, "w"
pfile) fclose(pfile

void hide flag(char *“pname

remove(pname); /* actually deletes the flag file! */

int main(int argc, char *argv

pid t child
child=fork 0

/** child stuff - wait for parent */

printf("[Child-%d] Waiting for parent... ",6getpid

wait_ flag(PARENT_FLAGl); /* wait for parent signal */

printf("YES!\n"

/** child stuff - send ack to parent */

printf("[Child-%d] Sending acknowledgement to
parent.\n", getpid

send flag(CHILD FLAG1

/** child stuff - wait for parent */

printf("[Child-%d] Waiting for parent... ", getpid

wait flag(PARENT FLAG2); /* wait for parent signal */

printf("YES!\n"

/** child stuff - send ack to parent */

printf("[Child-%d] Sending acknowledgement to
parent.\n", 6 getpid

send flag(CHILD FLAG2

/** parent stuff - send 'command' to child */

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/remove.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab0la

printf("[Parent-%d] Sending 'command' to child.\n", getpid
send flag(PARENT FLAG1

/** parent stuff - wait for child */

printf("[Parent-%d] Waiting for child response... ", 6 getpid
wait flag(CHILD FLAGl); /* wait for child signal */
printf("YES!\n"

/** parent stuff - cleanup! */

hide flag(PARENT FLAG1

hide flag(CHILD FLAG1); /** should be done by child? */
/** parent stuff - send 'command' to child */
printf("[Parent-%d] Sending 'command' to child.\n",6getpid
send flag(PARENT FLAG2

/** parent stuff - wait for child */

printf("[Parent-%d] Waiting for child response... ",6 getpid
wait flag(CHILD FLAG2); /* wait for child signal */
printf("YES!\n"

/** parent stuff - cleanup! */

hide flag(PARENT FLAG2

hide flag(CHILD FLAG2); /** should be done by child? */

printf("[%d] Done\n",h getpid

0

Messaging with Files

The advantage of having file-based communication is we can send more than just 'signals' - we can
now send sizable data. Given a set of source files to form a project for file-based communication -
starting with the main source:

fmsg.c

#include <unistd.h>
#include <stdio.h>

#define DATAFILE "message.txt"
#define WFLAG "WRITEDONE"
#define RFLAG "READDONE"

int main(int argc, char *argv

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=10

2026/02/02 15:01 9/13 Lab Work 2 (Part 1) - Processes and Threads

fork

/** child stuff */
char child msg[MSG SIZE MAX
check flag(WFLAG
read message (DATAFILE,child msg,MSG SIZE MAX
child msg[MSG SIZE MAX 0x0
printf("[Child-%d] MsgRead: %s\n",6getpid(),child msg
setup flag(RFLAG
check flag(WFLAG
clear_ flag(RFLAG

/** parent stuff */
char parent msg “"T AM LEGEND!"
write message(DATAFILE, parent msg
printf("[Parent-%d] MsgWrite: %s\n",6getpid parent msg
setup flag(WFLAG
check flag(RFLAG
clear flag(WFLAG
clear flag(DATAFILE

printf("[%d] Done\n", 6 getpid

Notice that no error checking has been done for the flag and message management functions. This is
left as an exercise for you. Next, let us take a look at the 'library' source:

fmsglib.c
/* ___
_______ >|</
#include "fmsglib.h"
/* ___
_______ */
#include <stdio.h>
/* ___
_______ >|</

int check flag(char *pname

int status FLAG EXISTS
FILE “pfile fopen(pname, "r"
pfile) fclose(pfile
status FLAG_MISSING
status

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=11
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab0la

int clear flag(char *pname

int status remove (pname
status
status FLAG_UNTOUCHED
status

int setup flag(char *pname

int status = check flag(pname
status==FLAG _MISSING

FILE “pfile = fopen(pname, "wt"
pfile) fclose(pfile
status = FLAG SETFAILED

status FLAG_SETEXISTS

status

int write message(char “pname, char *message

int status = MSG WRITE SUCCESS
FILE “pfile fopen(pname, "wt"
pfile

fprintf(pfile, message
fclose(pfile

status MSG WRITE FAILED
status

int read message(char *“pname, char *message, int size

int status = MSG_READ SUCCESS
FILE ‘pfile = fopen(pname,K "rt"
pfile

int loop test
test=fgetc(pfile EOF

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://www.opengroup.org/onlinepubs/009695399/functions/remove.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fprintf.html
http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://www.opengroup.org/onlinepubs/009695399/functions/fopen.html
http://www.opengroup.org/onlinepubs/009695399/functions/fgetc.html

2026/02/02 15:01 11/13 Lab Work 2 (Part 1) - Processes and Threads

message| Loop char) test
17 (loop>=size-1

status MSG_READ OVERFLOW
break

fclose(pfile
message | Loop 0x0

else status = MSG READ FAILED
return status

The functions are pretty straight forward, using file access functions available in stdio.h. Notice that
it uses a few constants that is defined in the header file:

fmsglib.h

#ifndef CMSGLIBH
#define CMSGLIBH

/** <function> flag return values */
#define FLAG EXISTS 0

#define FLAG MISSING -1

#define FLAG CLEARED 0

#define FLAG UNTOUCHED -2

#define FLAG SETUP 0O

#define FLAG SETEXISTS -3

#define FLAG SETFAILED -4

/** message size limit */
#define MSG SIZE MAX 80

/** message write status */
#define MSG WRITE SUCCESS 0
#define MSG WRITE FAILED -1
/** message read status */
#define MSG READ SUCCESS 0
#define MSG READ FAILED -1
#define MSG READ OVERFLOW -2

int check flag(char *pname
int clear flag(char *pname

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/fclose.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=12

Last update: 2020/09/13 17:25 archive:pgt200lab01a http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab0la

int setup flag(char *pname
int write message(char “pname, char *message
int read message(char “pname, char *‘message, int size

/23N
_______ */

#endif

/* ___
_______ >|</

Finally, a makefile to help manage build:

makefile

makefile to compile a ¢ program
PROJECT = fmsg
OBJECTS = fmsglib.o & (PROJECT) .o

CcC gcc
CFLAGS
LDFLAGS
PROJECT OBJECTS
CcC CFLAGS 0 $@ $+ LDFLAGS
o] C h
CcC CFLAGS c $<
o C
CcC CFLAGS c $<
clean

rm -rf PROJECT 0]

As with the previous 'long' code, spend some time to understand them. Try them out and modify
them to test your knowledge.

Process: Things to Tinker

Thing 1 Write a program that create 5 separate child processes that executes in parallel (the
example above creates a child process and wait for it to finish before creating another child). Each
child waits for a random number of seconds (between 10 to 20) before exiting. The program must be
able to detect all its child processes have finished before exiting.

Thing 2 Write a program that manages the listing, creation, deletion of child processes. Thus, when a
child process is created, it should simply hang around until being told to quit (delete process). The
listing of child processes should include information of its process ID and, optionally, its running time.

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:01

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01a&codeblock=13

2026/02/02 15:01 13/13 Lab Work 2 (Part 1) - Processes and Threads

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link: ;
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab0la '3

Last update: 2020/09/13 17:25

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01a

	Lab Work 2 (Part 1) - Processes and Threads
	Process: Introduction
	Notes

	Process Creation
	Simple Fork
	Parent Child Fork
	Multiple Forks

	Process Control
	Using Signals
	Using Files
	Messaging with Files

	Process: Things to Tinker

