
2026/02/14 14:22 1/8 Lab Work 2 (Part 2) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Lab Work 2 (Part 2) - Processes and Threads

Thread: Introduction

Threads are parts of a running program that can be made to execute as if they are done in parallel. In
this exercise, we will look at how a thread can be created and controlled. The codes in this section are
specific to Linux platform and cannot be used on a Windows platform. There are equivalent functions
in the Win32 API that can be used to achieve the same goal but they will NOT be discussed here.

Notes

The main difference between a thread and a process is the allocated address space. Unlike a process,
a newly created thread shares the same address space as its parent (main thread). This is about as
far as the difference goes because other than that, they are actually created to achieve the same
thing - multitasking. In fact, in some operating systems like Linux, they are even treated/handled the
same way.

The threads facility on Linux is implemented by an external POSIX threads (pthread) library and needs
to be linked. So, remember to include the -pthread switch when linking codes using the threads
facility.

Thread Creation

On Linux, the function that enables us to create a thread is called pthread_create. The prototype is

int pthread_create(pthread_t *restrict thread, const pthread_attr_t
*restrict attr,
 void *(*start_routine)(void*), void *restrict arg);

which is declared in pthread.h. It will return a value of 0 upon success (non-zero error number
otherwise). You may want to read the man page (man pthread_create) to get information on the
arguments.

In short, this function creates a thread (a task on Linux) with attributes specified in attr (default
attributes will be used if this is NULL). If everything goes well, it will store the ID of the thread in
thread and starts execution at the function pointed by start_routine with a single argument arg.
The argument arg is actually very useful when you need to pass data structure to the newly created
thread.

Simple Thread

Last update: 2020/09/13 17:42 archive:pgt200lab01b http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/14 14:22

A simple example that is equivalent to the code in Simple Fork:

smith_thread.c

#include <stdio.h>
#include <pthread.h>

static int check = 0;

void* go_smith(void* arg)
{
 if(arg)
 {
 pthread_t *psmith = (pthread_t*) arg;
 printf("I am Agent Smith %x @%p (%d)\n",*psmith,&check,check);
 check = 2;
 pthread_exit(0);
 }
 else
 {
 printf("I am Agent Smith 0 @%p (%d)\n",&check,check);
 }
 return 0x0;
}

int main(int argc, char *argv[])
{
 pthread_t smith;
 check = 1;
 pthread_create(&smith,0x0,&go_smith,&smith);
 pthread_join(smith,0x0);
 go_smith(0x0);
 return 0;
}

The output will be something like:

user@localhost:~$ smith_thread
I am Agent Smith 58956700 @0x600c80 (1)
I am Agent Smith 0 @0x600c80 (2)

Notice that when the global variable check is changed in the thread (check = 2;), this value is what
gets printed out by the main thread. This shows that threads share the same address space as the
main thread (notice that no parent-child concept here). You should note that pthread_join is
equivalent to waitpid used earlier.

http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01#simple_fork
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01b&codeblock=1
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/14 14:22 3/8 Lab Work 2 (Part 2) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Thread vs Process

smith_thread.c

#include <stdio.h>
#include <pthread.h>
/* do not need stdlib.h */
/* do not need wait.h */

/* declare a global variable */
static int check = 0;

/* function to be executed by created thread */
void* go_smith(void* arg)
{
 pthread_t *psmith = (pthread_t*) arg;
 check++;
 printf("I am Agent Smith %u @%p
(%d)\n",(unsigned)*psmith,&check,check);
 pthread_exit(0);
}

int main(int argc, char *argv[])
{
 pthread_t smith;
 check++;
 pthread_create(&smith,0x0,&go_smith,&smith);
 pthread_join(smith,0x0); /* wait for create thread to finish */
 printf("I am Agent Smith 0 @%p (%d)\n",&check,check);
 return 0;
}

smith_process.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <wait.h>

/* declare a global variable */
static int check = 0;

/* function to be executed by created process */
void* go_smith(void* arg)
{
 pid_t *psmith = (pid_t*) arg;
 check++;
 printf("I am Agent Smith %u @%p
(%d)\n",(unsigned)*psmith,&check,check);

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01b&codeblock=3
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01b&codeblock=4
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:42 archive:pgt200lab01b http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/14 14:22

 exit(0);
}

int main(int argc, char *argv[])
{
 pid_t smith;
 check++;
 if(!fork()) { smith = getpid(); go_smith(&smith); }
 waitpid(smith,0x0,0); /* wait for create process to finish */
 printf("I am Agent Smith 0 @%p (%d)\n",&check,check);
 return 0;
}

Thread Control

This is actually much simpler due to the fact that threads share the same address space. But this also
introduces race issues - what is the correct sequence when two threads are trying to access the same
address? Therefore, a special flag is required to ensure only one thread can access a common
address memory at one time, which will validate proper sequence of code. The flag is know as a
MUTEX (MUTual EXclusive) and in the pthread library, it can be declared and initialized as follows:

pthread_mutex_t shared_region = PTHREAD_MUTEX_INITIALIZER;

PTHREAD_MUTEX_INITIALIZER is actually a macro that initializes a statically allocated mutex with
default attributes.

The actual functions used to initialize and destroy a mutex are:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,const
pthread_mutexattr_t *restrict attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

Whenever a thread requires access to the common address memory, it needs to request a lock on the
mutex object using:

pthread_mutex_lock(&shared_region);

If the mutex is already locked by another thread, this function will block execution until it can get an
exclusive lock. Of course, this means that all threads should be responsible enough to unlock the
mutex once it is done:

pthread_mutex_unlock(&shared_region);

http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/14 14:22 5/8 Lab Work 2 (Part 2) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Multiple Threads

An example to show the use of mutexes:

parallel.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

/* statically allocated mutex initialization */
pthread_mutex_t shared_region = PTHREAD_MUTEX_INITIALIZER;
static int active = 0;

typedef struct __thread_data
{
 pthread_t thread_id;
 int thread_index;
 int thread_pause;
 int thread_exec;
 int thread_wait;
 int thread_run;
}
thread_data;

#include <unistd.h> /* STDIN_FILENO */
#include <termios.h> /* struct termios */
#define MASK_LFLAG (ICANON|ECHO|ECHOE|ISIG)
int getch(void)
{
 struct termios oldt, newt;
 int ch;
 tcgetattr(STDIN_FILENO, &oldt);
 newt = oldt;
 newt.c_lflag &= ~MASK_LFLAG;
 tcsetattr(STDIN_FILENO, TCSANOW, &newt);
 ch = getchar();
 tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
 return ch;
}

void* thread_exec(void* arg)
{
 if(arg)
 {
 thread_data *pdata = (thread_data*) arg;
 pdata->thread_run = 1;
 while(pdata->thread_exec)
 {
 if(pdata->thread_pause)

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01b&codeblock=9
http://www.opengroup.org/onlinepubs/009695399/functions/getch.html
http://www.opengroup.org/onlinepubs/009695399/functions/getchar.html

Last update: 2020/09/13 17:42 archive:pgt200lab01b http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/14 14:22

 {
 if(pdata->thread_run)
 {
 printf("[Thread-%d] Thread
Paused!\n",pdata->thread_index);
 pdata->thread_run = 0;
 }
 continue;
 }
 if(!pdata->thread_run)
 {
 printf("[Thread-%d] Thread
Resumes\n",pdata->thread_index);
 pdata->thread_run = 1;
 }
 printf("[Thread-%d] Sleeping %d
seconds\n",pdata->thread_index,
 pdata->thread_wait);
 sleep(pdata->thread_wait);
 /* something happened while you were sleeping */
 if(!pdata->thread_exec) break;
 pthread_mutex_lock(&shared_region);
 printf("[Thread-%d] Changing active from %d to %d!\n",
 pdata->thread_index,active,pdata->thread_index);
 active = pdata->thread_index;
 pthread_mutex_unlock(&shared_region);
 }
 pthread_exit(0);
 }
 return 0x0;
}

int main(int argc, char *argv[])
{
 thread_data exec1, exec2;
 int not_done = 1, test;
 /* start random number generator */
 srand(time(0x0));
 /** initialize exec1 */
 exec1.thread_index = 1;
 exec1.thread_pause = 1;
 exec1.thread_exec = 1;
 exec1.thread_wait = (rand()%10)+1;
 exec1.thread_run = 0;
 pthread_create(&exec1.thread_id,0x0,&thread_exec,(void*)&exec1);
 /** initialize exec2 */
 exec2.thread_index = 2;
 exec2.thread_pause = 1;
 exec2.thread_exec = 1;
 exec2.thread_wait = (rand()%10)+1;
 exec2.thread_run = 0;

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/srand.html
http://www.opengroup.org/onlinepubs/009695399/functions/time.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html

2026/02/14 14:22 7/8 Lab Work 2 (Part 2) - Processes and Threads

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

 pthread_create(&exec2.thread_id,0x0,&thread_exec,(void*)&exec2);
 /** main loop for main thread */
 sleep(1);
 printf("[Main] Starting threads execution...\n");
 exec1.thread_pause = 0;
 exec2.thread_pause = 0;
 while(not_done)
 {
 printf("[Main] <ESC> Exit, <SPACE> Pause/Resume, <R>andomize
Sleep\n");
 switch(test=getch())
 {
 case 0x1B: /** ASCII ESC */
 not_done = 0;
 break;
 case 0x20: /** ASCII SPACE */
 exec1.thread_pause = !exec1.thread_pause;
 exec2.thread_pause = !exec2.thread_pause;
 break;
 case (int)'R':
 printf("[Main] Pause threads execution...\n");
 exec1.thread_pause = 1;
 exec2.thread_pause = 1;
 printf("[Main] Waiting for threads to pause...\n");
 while(exec1.thread_run||exec2.thread_run);
 printf("[Main] Randomizing Sleep Params...\n");
 exec1.thread_wait = (rand()%10)+1;
 exec2.thread_wait = (rand()%10)+1;
 printf("[Main] Wait1=%d, Wait2=%d\n",exec1.thread_wait,
 exec2.thread_wait);
 printf("[Main] Resume threads execution...\n");
 exec1.thread_pause = 0;
 exec2.thread_pause = 0;
 break;
 default:
 printf("[CHECK]=>'%02X'\n",test);
 }
 }
 /* stop threads */
 printf("[Main] Stopping threads execution...\n");
 exec1.thread_exec = 0;
 exec2.thread_exec = 0;
 /* wait threads to finish */
 printf("[Main] Waiting for threads to finish...\n");
 pthread_join(exec1.thread_id,0x0);
 pthread_join(exec2.thread_id,0x0);
 printf("[Main] Done!\n");
 return 0;
}

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/getch.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:42 archive:pgt200lab01b http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/14 14:22

Another long one… you know what to do!

Thread: Things to Tinker

Thing1 Modify parallel.c so that the main thread can send a text message for the worker threads

to print (or anything that is more interesting). Hint: You should modify the structure so that it
contains a buffer for message passing.

Thing 2 Write a program that manages the listing, creation, deletion of threads. Thus, when a thread
is created, it should simply hang around until being told to quit (delete thread). The listing of running
threads should include information of its thread ID and, optionally, its running time.

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

Last update: 2020/09/13 17:42

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

	Lab Work 2 (Part 2) - Processes and Threads
	Thread: Introduction
	Notes

	Thread Creation
	Simple Thread
	Thread vs Process

	Thread Control
	Multiple Threads

	Thread: Things to Tinker

