2025/05/30 13:34 1/8 Lab Work 2 (Part 2) - Processes and Threads

Lab Work 2 (Part 2) - Processes and Threads

Thread: Introduction

Threads are parts of a running program that can be made to execute as if they are done in parallel. In
this exercise, we will look at how a thread can be created and controlled. The codes in this section are
specific to Linux platform and cannot be used on a Windows platform. There are equivalent functions
in the Win32 API that can be used to achieve the same goal but they will NOT be discussed here.

Notes

The main difference between a thread and a process is the allocated address space. Unlike a process,
a newly created thread shares the same address space as its parent (main thread). This is about as
far as the difference goes because other than that, they are actually created to achieve the same
thing - multitasking. In fact, in some operating systems like Linux, they are even treated/handled the
same way.

The threads facility on Linux is implemented by an external POSIX threads (pthread) library and needs
to be linked. So, remember to include the -pthread switch when linking codes using the threads
facility.

Thread Creation

On Linux, the function that enables us to create a thread is called pthread create. The prototype is

int pthread create(pthread t *restrict thread, const pthread attr t
*restrict attr,
void *(*start routine) (void*), void *restrict arg);

which is declared in pthread. h. It will return a value of 0 upon success (non-zero error number
otherwise). You may want to read the man page (man pthread create) to get information on the
arguments.

In short, this function creates a thread (a task on Linux) with attributes specified in attr (default
attributes will be used if this is NULL). If everything goes well, it will store the ID of the thread in
thread and starts execution at the function pointed by start routine with a single argument arg.
The argument arg is actually very useful when you need to pass data structure to the newly created
thread.

Simple Thread

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Last update: 2020/09/13 17:42 archive:pgt200lab01b http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

A simple example that is equivalent to the code in Simple Fork:

smith_thread.c

#include <stdio.h>
#include <pthread.h>

static int check
void* go _smith(void* arg
arg

pthread t “psmith pthread t arg

printf("I am Agent Smith %x @%p (%d)\n",*psmith,&check, check
check

pthread exit

printf("I am Agent Smith 0 @%p (%d)\n", &check, check

0x0

int main(int argc, char *argv

pthread t smith

check

pthread create(&smith,0x0,&g0 smith, &smith
pthread join(smith, 0x0

go_smith(0Ox0

The output will be something like:

user@localhost:~$ smith thread
I am Agent Smith 58956700 @Ox600c80 (1)
I am Agent Smith 0 @Ox600c80 (2)

Notice that when the global variable check is changed in the thread (check = 2;), this value is what
gets printed out by the main thread. This shows that threads share the same address space as the
main thread (notice that no parent-child concept here). You should note that pthread joinis
equivalent to waitpid used earlier.

http://azman.unimap.edu.my/dokuwiki/ Printed on 2025/05/30 13:34

http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01#simple_fork
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01b&codeblock=1
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2025/05/30 13:34 3/8 Lab Work 2 (Part 2) - Processes and Threads

Thread vs Process

smith_thread.c

#include <stdio.h>
#include <pthread.h>

/* do not need stdlib.h */
/* do not need wait.h */

/* declare a global variable */
static int check = 0

/* function to be executed by created thread */
void* go _smith(void* arg

pthread t “psmith pthread t*) arg

check

printf("I am Agent Smith %u @%p
(%sd)\n", (unsigned) *psmith, &check, check

pthread exit(0

int main(int argc, char *argv

pthread t smith
check
pthread create(&smith,0x0,&g0 smith, &smith
pthread join(smith,0x0); /* wait for create thread to finish */
printf("I am Agent Smith 0 @%p (%d)\n",6 &check, check
0

smith_process.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <wait.h>

/* declare a global variable */
static int check = 0

/* function to be executed by created process */
void* go _smith(void* arg

pid t “psmith pid t*) arg

check

printf("I am Agent Smith %u @%p
(%sd)\n", (unsigned) “psmith, &check, check

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01b&codeblock=3
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01b&codeblock=4
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:42 archive:pgt200lab01b http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

exit

int main(int argc, char *argv

pid t smith
check
fork smith = getpid go_smith(&smith
waitpid(smith, Ox0 /* wait for create process to finish */

printf("I am Agent Smith 0 @%p (%d)\n",&check, check

Thread Control

This is actually much simpler due to the fact that threads share the same address space. But this also
introduces race issues - what is the correct sequence when two threads are trying to access the same
address? Therefore, a special flag is required to ensure only one thread can access a common
address memory at one time, which will validate proper sequence of code. The flag is know as a
MUTEX (MUTual EXclusive) and in the pthread library, it can be declared and initialized as follows:

pthread mutex t shared region = PTHREAD MUTEX INITIALIZER;

PTHREAD MUTEX INITIALIZER is actually a macro that initializes a statically allocated mutex with
default attributes.

The actual functions used to initialize and destroy a mutex are:

int pthread mutex init(pthread mutex t *restrict mutex,const
pthread mutexattr t *restrict attr);

int pthread mutex destroy(pthread mutex t *mutex);

Whenever a thread requires access to the common address memory, it needs to request a lock on the
mutex object using:

pthread mutex lock(&shared region);

If the mutex is already locked by another thread, this function will block execution until it can get an
exclusive lock. Of course, this means that all threads should be responsible enough to unlock the
mutex once it is done:

pthread mutex unlock(&shared region);

http://azman.unimap.edu.my/dokuwiki/ Printed on 2025/05/30 13:34

http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2025/05/30 13:34 5/8 Lab Work 2 (Part 2) - Processes and Threads

Multiple Threads

An example to show the use of mutexes:

parallel.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

/* statically allocated mutex initialization */
pthread mutex t shared region PTHREAD MUTEX INITIALIZER
static int active

typedef struct thread data

pthread t thread id
int thread index
int thread pause
int thread exec

int thread wait

int thread run

thread data

#include <unistd.h> /* STDIN FILENO */
#include <termios.h> /* struct termios */
#define MASK LFLAG (ICANON|ECHO|ECHOE|ISIG)

int getch(void

struct termios oldt, newt

int ch

tcgetattr(STDIN FILENO, &toldt
newt = oldt

newt.c lflag ~MASK LFLAG

tcsetattr(STDIN FILENO, TCSANOW, &newt

ch = getchar

tcsetattr(STDIN FILENO, TCSANOW, foldt
ch

void* thread exec(void* arg
arg
thread data “pdata thread data®) arg
pdata->thread run

pdata->thread exec

pdata->thread pause

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt200lab01b&codeblock=9
http://www.opengroup.org/onlinepubs/009695399/functions/getch.html
http://www.opengroup.org/onlinepubs/009695399/functions/getchar.html

Last update: 2020/09/13 17:42 archive:pgt200lab01b http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

pdata->thread run

printf("[Thread-%d] Thread
Paused!\n", pdata->thread index
pdata->thread run

pdata->thread run

printf("[Thread-%d] Thread
Resumes\n", pdata->thread index
pdata->thread run

printf("[Thread-%d] Sleeping %d
seconds\n", pdata->thread index

pdata->thread wait

sleep(pdata->thread wait

/* something happened while you were sleeping */
pdata->thread exec) break

pthread mutex lock(&shared region

printf("[Thread-%d] Changing active from %d to %d!\n"
pdata->thread index,active, pdata->thread index

active = pdata->thread index

pthread mutex unlock(&shared region

pthread exit

0x0

int main(int argc, char *argv

thread data execl, exec2

int not done test

/* start random number generator */
srand(time(0x0

/** initialize execl */
execl.thread index

execl.thread pause
execl.thread exec

execl.thread wait rand 10
execl.thread run

pthread create(fexecl.thread id,0x0,&thread exec, (void*)texecl
/** initialize exec2 */
exec2.thread index

exec2.thread pause
exec2.thread exec

exec2.thread wait rand 10
exec2.thread run

http://azman.unimap.edu.my/dokuwiki/ Printed on 2025/05/30 13:34

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/srand.html
http://www.opengroup.org/onlinepubs/009695399/functions/time.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html

2025/05/30 13:34 7/8 Lab Work 2 (Part 2) - Processes and Threads

pthread create(fexec2.thread id,0x0,&thread exec, (void™®) fexec?2
/** main loop for main thread */
sleep(1l
printf("[Main] Starting threads execution...\n"
execl.thread pause = 0
exec2.thread pause = 0
not_done

printf("[Main] <ESC> Exit, <SPACE> Pause/Resume, <R>andomize
Sleep\n"
test=getch

O0x1B: /** ASCII ESC */
not done = 0

break
0x20: /** ASCII SPACE */
execl.thread pause execl.thread pause
exec2.thread pause exec2.thread pause
break

int) 'R’

printf("[Main] Pause threads execution...\n"

execl.thread pause 1

exec2.thread pause = 1

printf("[Main] Waiting for threads to pause...\n"

execl.thread run||exec2.thread run

printf("[Main] Randomizing Sleep Params...\n"

execl.thread wait rand 10)+1

exec2.thread wait rand()%10)+1

printf("[Main] Waitl=%d, Wait2=%d\n",execl.thread wait
exec2.thread wait

printf("[Main] Resume threads execution...\n"

execl.thread pause = 0

exec2.thread pause = 0

break

printf (" [CHECK]=>"'%02X"'\n", test

/* stop threads */
printf("[Main] Stopping threads execution...\n"
execl.thread exec = 0
exec2.thread exec = 0
/* wait threads to finish */
printf("[Main] Waiting for threads to finish...\n"
pthread join(execl.thread id, 0x0
pthread join(exec2.thread id, 0x0
printf("[Main] Done!\n"
0

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/getch.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/rand.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2020/09/13 17:42 archive:pgt200lab01b http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

Another long one... you know what to do!

Thread: Things to Tinker

Thing1 Modify parallel. c so that the main thread can send a text message for the worker threads

o0
to print (or anything that is more interesting W). Hint: You should modify the structure so that it

contains a buffer for message passing.

Thing 2 Write a program that manages the listing, creation, deletion of threads. Thus, when a thread
is created, it should simply hang around until being told to quit (delete thread). The listing of running
threads should include information of its thread ID and, optionally, its running time.

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:

Last update: 2020/09/13 17:42

http://azman.unimap.edu.my/dokuwiki/ Printed on 2025/05/30 13:34

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt200lab01b

	Lab Work 2 (Part 2) - Processes and Threads
	Thread: Introduction
	Notes

	Thread Creation
	Simple Thread
	Thread vs Process

	Thread Control
	Multiple Threads

	Thread: Things to Tinker

