2026/01/19 10:05 1/13 Lab Work 1 - Tools and Platform

Lab Work 1 - Tools and Platform

The practical side of this course naturally requires a lot of programming work. We are going to write
codes mainly using C programming language. Some assembly will be shown to demonstrate a few
examples but students are not required to master them. The recommended development platform is
Linux, but the module will show how it can be done on Windows (since this is what most students are
familiar with).

Development Board

The development board used in this course will be the Raspberry Pi - a credit-card sized single-board
computer developed by the Raspberry Pi Foundation (UK). The board is based on Broadcom's
BCM2835 (ARM-based) Applications Processor. Information on the peripherals available on this
particular microcontroller can be obtained from the official Raspberry Pi site (here). A local copy for
PGT302 students is available here. The Embedded Linux wiki page provides a good documentation for
this board (e.g. BCM2835 framebuffer info can be found here).

Introduction

There have been a few versions of the board since it first came out in 2012 (pre-launched the year
before). The ones available in our lab are the Model B+ Version 1. Here are some general
specifications for this particular board:

¢ A System on Chip BCM2835 package (with CPU & GPU) stacked on an SDRAM package
e CPU is 700 MHz ARM1176JZF-S core (ARM11 family, ARMv6 instruction set)

e GPU is 250 MHz Broadcom VideoCore IV (supports OpenGL, with video/audio? codec)

e 512MB SDRAM shared by both GPU and CPU

40-pin GPIO header connector (27-GPIO pins)

Powered by mini-USB connector (or GPIO header) requiring up to 600mA (3W)

1 ethernet port, 4 USB ports (on-board 5-port USB hub)

HDMI video/audio output, separate 3.5mm audio jack

Each board optionally comes with a NOOBS (New Out Of the Box Software) micro-SD card. This is
basically an OS installer (mostly Linux-based) which can be used to setup the micro-SD card for
various applications programming tasks.

The recommended/official OS is Raspbian (a Debian-based distribution tailored for Raspberry Pi).
Other options are considered third-party images, which can be obtained here.

The nice thing about this board is it has an HDMI output (which is becoming a norm for flat panel
\ A 4

A

display unit). Connect a USB keyboard and a USB mouse, you get a PC running Debian

Note: We will only use Linux-based OS towards the end of this course.

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt302:raspberry_pi-quickstart.pdf
https://www.raspberrypi.org/
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt302:bcm2835_peripherals.pdf
http://elinux.org/RPi_Software#Overview
http://elinux.org/RPi_Framebuffer
https://www.raspberrypi.org/downloads/noobs/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/

Last update: 2021/10/27 16:25 archive:pgt302lab00 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab00

Devinfo: Board Schematic

This is the schematic for Raspberry Pi Model B V1.2+.

Devinfo: Peripherals Address Map

The information here is for (somewhat) low-level programming, that is if you are interested in
accessing the hardware from your software code. If you are only interested in developing applications
for Linux running on the Raspberry Pi, you most probably do not need this.

As with any development board, the first things you would like to know before you start programming
is how to access (address?) the peripherals. The figure below (taken from BCM2835 ARM Peripherals
documentation) shows an overview of the systems peripheral addressing information.

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/01/19 10:05

2026/01/19 10:05 3/13 Lab Work 1 - Tools and Platform

m'louﬂ. BCM2835 ARM Peripherals
i I

FIFFIFFF
Blw of Fruskcal mamirs FFFFFFEF
Bl in arm_nadar
4200200]
' 13 Paripharals
4 V) D I bAT A
T i - dved uncated . F b0

Earagl-wce Vetusl
SideEen

CAROI0Y

Ui Wz spil

Jp— clxierred by el

S GAranan 0momn
B ek - L2 cached |onl)

— W3 Base sall
amm_|oader { 3 000000

FECOLGSD

Usier-mode Page-magped
W Address

— T ok Sysbein SOFAL

& HiER-L2 rAnhe
cabaiilimn Macaing

AN WCAFI sl B
A— ;T piath
coffgarshisn
e B0RA
T ME <L @ L2 cches i e A7)
00DM0ID
ARVIPRAPsicsl
Addresses
00000 000 000
W CPU Bus ARM Virtaal
Addreses Adrewses
06 Febreary 2012 Broadoom Europe Lid. 406 Science Park Mibon Rosd Cambridge CB4 0WW Page 8

© 3012 Broadoom Corporation. Al rights reserved

The thing to look for here is the 1/0O Peripherals (which includes the GPIO pins) and notice that there
are three information entries - 0xF2000000 on the ARM Virtual Address, 0x20000000 on the ARM
Physical Address (noted as set by arm_loader) and 0x7E000000 on the Video Core CPU Bus Address.
You need these information to access the I/O peripherals.

Devinfo: GPIO Header Information

This is the information you need to connect the Pi to various peripherals

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Last update: 2021/10/27 16:25

archive:pgt302lab00 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab00

Raspberry Pi B
Rev 1 P1 GPIO Header
Pin MNo.

GPIO Numbers

Raspberry Pi AIB
Rev 2 P1 GPIO Header

Raspberry Pi B+
B+ J8 GPIO Header

EE 1
GPIO0 3
GPIO1 5
GPIO4 7
9
GPIO17 11
GPIO21 13
GPIO22 15
EED] 17
GPIO10 19

GPIOS 21
GPIO11 23

___GNDEX

2 E
4 Y
-MGND
8 GPIO14
10 GPIO15
12 GPIO18
14
16 GPIO23
18 GPIO24
20

22 GPIO25
24 GPIOS
26 GPIOT

Pin No. Pin No.
BEED L 2 {] 1 2
GPIOZ 3 4)] GPIOZ 3 4
GPIO3 5 6 [y GPIOZ 5 6
GPIO4 7 8 GPIO14 GPIO4 7 8 GPIO14
9 10 GPIO15 9 10 GPIO15
GPIO17 11 12 GPIO18 GPIO17 11 12 GPIO18
GPI027 13 14 cri027 13 14 ENDIEN
GPI022 15 16 GPIO23 GPIO22 15 16 GPIO23
XD 17 18 GPIO24 17 18 GPIO24
GPIO10 19 20 GrPio10 19 20 NN
GPIOS 21 22 GPIO25 GPIOS 21 22 GPIO25
GPIO11 23 24 GPIO8 GPIO11 23 24 GPIO8
BT 25 26 cPIO7 25 26 GPIO7
DNC 27 28 DNC
crios 29 20 I
GPIO6 31 32 GPIO12
LRl UART GPIO13 33 34 [c)]y]
SPI GPIO19 35 36 GPIO16
GPIO GPIO26 37 38 GPIO20
BT 39 40 GPIo21

You can find the GPIO that you need to use on the respective headers (in our case, it is the 40-pin

header).

http://azman.unimap.edu.my/dokuwiki/

Printed on 2026/01/19 10:05

2026/01/19 10:05 5/13 Lab Work 1 - Tools and Platform

Raspberry Pi B+ J8 Header

Pint NAME NAME Pin#
01 3.3v DC Power DC Power v 02
03 GPI002 (SDA1 | 12C) DC Power Sv 04
05 GPIQ03 (SCL1, 12C) Ground 06

GPIO04 (GPIO_GCLK) e (o (TXDO) GPIO14 08
09 Ground o (o (RXD0) GPIO15 10
11 GPIO1T (GPIO_GENOD) o o (GPIO_GEN1) GPIO18 12
13 GPIO27 (GPIO _GEM2) ol e Ground 14
15 GPIO22 (GPIO_GEN3) o » (GPIO_GEMN4) GPIO23 16
17 3.3v DC Power e » (GPIO GENS) GP1024 18
19 GPIO10 (SPI_MOSI) O Ground
27 GPIO09 (SPI_MISO) CIL (GPIO_GENG) GPIO25 22
23 GPIO11 (SPI_CLK) e e (SP1_CEO _N) GPIOO8 24
25 Ground o (e (SPI_CE1_N) GPIO07 26
27 ID_SD (I2C ID EEPROM) @ @ (12C ID EEPROM) ID_SC 28
29 GPIOOS e o Ground 30
31 GPIOCE - GPIO12 32
33 GPIO13 L] Ground 34
35 GPIO19 - GPIO16 36
37 GPIO26] GPI1020 38
39 Ground] GPI021 40

e http:/fiwww.element14.com

Note: | got these images from the internet. Credits due to the original owner(s).

Preparing SD Card

Note: As mentioned earlier, we will be using bare-metal programming at first, and then, progress
towards using Raspbian.

Note: The term SD card mentioned here generally covers/means the microSD card.

This is a guide to prepare such card from scratch. If you already have the one that comes along with
the board (NOOBS card, is it?), this procedure will override and delete existing content. Backup or
forever hold your peace! Well, if you cannot do that and you want to have NOOBS back, head on to
this page and download the latest NOOBS image.

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://www.raspberrypi.org/downloads/noobs/

Last update: 2021/10/27 16:25 archive:pgt302lab00 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab00

Bare-metal Programming

Note: Your instructor will show you how to partition/format the SD card.
To exclusively work on bare-metal programming (no 0OS):

e Format the card with at least one FAT32 partition
o Linux platform - use fdisk for this (usually need root... unless your user have permission)
o Windows platform - use diskpart (run as administrator)... OR, maybe this? (The link is for
\ A 4
portable version.. there is also an installer if that is your cup of coffee)

e Get the required firmware from here - we only need 2 files from boot folder (bootcode.bin and
start.elf). For the sake of being 'politically correct’, | also copied LICENSE.broadcom file. OR, get
my personal copy here (which is what | usually pass to my students on a USB drive).

* Place those 3 files in the root of the previously FAT32-formatted SD card

¢ Along with your kernel.img code, you should be able to take control of the Pi

A nice config for multiple kernels - this is what | use to have multiple kernel (mylbarepi codes)
images on my SD card

config-mylbarepi.txt

kernel is the alternative kernel filename

- [Pi 1, Pi Zero, and Compute Module] kernel.img
- [Pi 2, Pi 3, and Compute Module 3] kernel7.1img
- [Pi4] kernel71l.1img.
#kernel=kernel video temp.img

#kernel=kernel sdcard.img
kernel=kernel pick one.img

Installing Raspbian OS

Update20210907 The official OS is now known as Raspberry Pi OS (instead of Raspbian). Check out
o0
this official page. | will try to update this site A.S.A.P. - but, do not hold your breath @D

We will be using Raspbian (the official Linux distribution for Raspberry Pi). This enables us to run web
servers and other network-related stuffs.

[201804011654] Note: | just noticed there is now an option to use Windows10 IOT Core (which is
prepared by Microsoft as a third party option), but I will not be using that here. Checkout this page for
other options

e Download system image
o Official Raspbian (latest)
= This is a ZIP file containing an image file - e.g. 2018-11-13-raspbian-stretch.zip
o For PGT302 students, get one with PGT302-specific customization

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/01/19 10:05

https://www.partitionwizard.com/partitionmagic/portable-partition-magic.html
https://github.com/raspberrypi/firmware
https://github.com/raspberrypi/firmware/blob/master/boot/bootcode.bin
https://github.com/raspberrypi/firmware/blob/master/boot/start.elf
https://github.com/raspberrypi/firmware/blob/master/boot/LICENCE.broadcom
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt302:my1barepi_startup-20210326.zip
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab00&codeblock=0
https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/raspbian/
https://downloads.raspberrypi.org/raspbian_latest

2026/01/19 10:05 7/13 Lab Work 1 - Tools and Platform

= Ask your instructor
e Extract (unzip) the image (file with *.img extension)
o e.g. 2018-03-13-raspbian-stretch.img
o currently, at least 8GB SD card is required...
e Write the image to SD card
o Insert the SD card to your SD card reader
o Linux Platform - use dd for this
= assuming the device is at /dev/sdb
» use dd if=2018-03-13-raspbian-stretch.img of=/dev/sdb and wait...
o Windows Platform - | recommend Win32Diskimager (I got the Win32Diskimager-1.0.0-
binary.zip file)
= find (and VERIFY) drive letter for your SD card
» select image, start write and wait...

Raspbian-ready Plus Bare-metal Programming

To have Raspbian-ready card as well as working on bare-metal programming:
¢ Follow normal instruction for installing Raspbian OS

Note: Do the following procedure on your PC.

To use bare-metal code:

e Rename kernel.img and config.txt to avoid being used
o e.g. rename kernel.img - kernel-raspbian.img
o e.g. rename config.txt = config-raspbian.txt
e Make sure there is no config.tx file
e Simply copy your own compiled kernel.img to the FAT32 partition

To get Raspbian back running:

* Get the saved files appropriately named:
o e.g. copy kernel-raspbian.img — kernel.img
o e.g. copy config-raspbian.txt = config.txt

Raspberry Pi Zero as USB Client

Pi Zero has a USB On-the-Go (OTG) hub - which, basically means that it can be both host (like USB
hub on a PC) AND client (like USB hub on Android or most gadgets these days). So, to setup Pi Zero as
a client (this is done on a PC - while preparing the card),

1. Follow normal instruction for installing Raspbian OS
2. Edit config.txt (on boot partition) and insert dtoverlay=dwc2 line
3. Edit cmdline.txt and insert modules-load=dwc2,g ether kernel parameter
o also, insert g _ether.host addr=<mac_addr> to get a fixed MAC address (easier to
manage!)
4. Add empty file called ssh (same location as config. txt) - this will enable ssh

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://sourceforge.net/projects/win32diskimager/files/Archive/

Last update: 2021/10/27 16:25 archive:pgt302lab00 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab00

Connect Pi Zero to a PC (allow some time for it to finish booting) and it should appear as ethernet
device. To connect to it,

e using network manager:
o config ipv4 as link-local only
o config ipv6 as ignore
* use ssh to connect
o ssh pi@raspberrypi.local
= default password: raspberry
o use ssh-copy-id to use key-based auth

To share the internet with the Pi
¢ find the IP address on usbh0
$ ifconfig usbO

o we need this later on Pi
e allow IP forwarding on the host

echo 1 > /proc/sys/net/ipv4/ip forward
iptables -t nat -A POSTROUTING -o eth@ -j MASQUERADE

o to remove this later

echo 0 > /proc/sys/net/ipv4/ip_ forward
iptables -t nat -D POSTROUTING -o eth@® -j MASQUERADE

o note for wifi internet, change eth0 to wlan@
e ssh into pi
e (OPTIONAL) add a name server (e.g. nameserver <ip-add-of-usb0>) to /etc/resolv.conf

o or, just use 8.8.8.8
* set the default gateway on Pi to host PC's IP

route add default gw <ip-add-of-usb0>

Have fun!

Note:l have tested this using Raspbian Lite on Pi Zero and it worked! (Obviously)

Advanced Configurations

Using the above setup should get simple projects going without any problems. However, some things
on the BCM2835 require special configurations on the GPU side. This can be changed by having a
config.txt file in the same path as the files above.

Example of the configuration file:

config.txt

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/01/19 10:05

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab00&codeblock=5

2026/01/19 10:05 9/13

Lab Work 1 - Tools and Platform

specify gpu memory allocation

- min 16, max 192 (256), 448(512), 944 (1024)
- default 64

#gpu_mem=64

disables CPU access to GPU L2 cache
- default 0 (enabled)
#disable l2cache=1

specify kernel name

- kernel7.img default for pi2/pi3

- kernel8.img preferred on pi3 (for 64b mode)
- common default is kernel.img?
#kernel=kernel.img

specify startup address for ARM kernel
- default 32b: 0x8000

- default 64b: 0x80000

- kernel old=1 option overrides to 07
#kernel address=0x8000

#kernel old=1

camera needs start x.elf firmware

- or, start file=start x.elf, fixup file=fixup x.dat

#start x=1

prevent red camera led to turn on while camera is active

- default 0 (enabled)
#disable camera led=1

To activate an option, simply remove the '#' character for the beginning of the option line
(uncomment). More information on config.txt can be found here. We can also have conditional

filters.

Other custom configuration(s):

config.

txt

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://www.raspberrypi.org/documentation/configuration/config-txt/
https://www.raspberrypi.org/documentation/configuration/config-txt/conditional.md
https://www.raspberrypi.org/documentation/configuration/config-txt/conditional.md
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab00&codeblock=6

Last update: 2021/10/27 16:25 archive:pgt302lab00 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab00

for 5-inch lcd with touchscreen

max_usb current=1

hdmi_ group=2

hdmi mode=87

hdmi cvt 800 480 60 6 0 0 0

dtoverlay=ads7846,cs=1,penirq=25,penirq pull=2,speed=50000, keep vref on
=0, swapxy=0, pmax=255, xohms=150, xmin=200, xmax=3900, ymin=200, ymax=3900
#display rotate=0

General Issues

MicroSD Card Failed Boot

Sometimes, the card simply cannot boot. Use fdisk to check/create 255 heads, 63 sectors and
calculate the required cylinders based on

disk size = cylinders * head * sector * sector size

Not sure why this happens... maybe BIOS issue when formatting on PC? Or, maybe my students'
laptops are infected with virus?

Raspbian Update Error

¢ | used the 2017-09-07-raspbian-stretch.img and got an error while trying to update
o problems seem to be with storage space (98% usage)
o turns out the partition for root fs was only 4.9GB
e to resize the partition, use fidsk
o assume card is /dev/sdb (i use USB card reader)
o fdisk /dev/sdb
delete partition 2 and recreate (make sure use the same start sector!)
save and exit
cleanthe fs e2fsck -f /dev/sdb2
resize resize2fs /dev/sdb2

[¢]

[¢]

[¢]

[¢]

2023/08/29 13:04

Development Tool

We usually have a more powerful machine on our desktop compared to our target embedded
platform. It is therefore more convenient to compile the target embedded software on our desktop
(another reason would be simply because our platform is NOT capable of compiling its own program).
This process usually requires us to have/build cross-compilers - compiler that runs on a host machine,
but produces binary/executable for a target machine. You can read about my experience on cross-
compilation here.

A simple script to build a cross-compiler for Pi is available in mylubuild project. The project is actually
a repository of build scripts for various tools. The one we need here is arm-gcc.build.

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/01/19 10:05

https://en.wikipedia.org/wiki/Cross_compiler
http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:cross_compiler
http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:cross_compiler
https://github.com/azman/my1ubuild
https://github.com/azman/my1ubuild/blob/master/arm-gcc.build

2026/01/19 10:05 11/13 Lab Work 1 - Tools and Platform

Note: Video guides are available on YouTube

Linux Platform

You are encouraged (...required, actually) to try to build your own cross-compiler using the script
mentioned above. If you have problems, you can always ask your instructor.

Windows Platform

You can either try to build your own cross-compiler on Windows using the script mentioned above, OR
you can simply get the one | have already built for you.

Building a Cross-compiler

Note20211027 Notes on setting up latest MinGW environment is available here.

We need to have a working compiler. | prefer MinGW (Minimalist GNU for Windows), so that is what I'll
use to demonstrate. Download the mingw-get installer from here. At the moment, the latest version is
0.6.2-beta-20131004-1, so | download mingw-get-0.6.2-mingw32-beta-20131004-1-bin. zip.

I want my compiler in C:\Users\Public\Tool\mingw, so | created that folder and extract the
contents into that folder. Open up a command prompt, change path

cd C:\Users\Public\Tool\mingw\bin

and run the following:

e mingw-get install “gcc=5.3.*"

e mingw-get install “g++=5.3.*"

e mingw-get install gmp

e mingw-get install mpfr

e mingw-get install mpc

e mingw-get install msys

e mingw-get install msys-wget-bin

Edit C:\Users\Public\Tool\mingw\msys\1l.0\etc\profile and comment the last line which is
a cd $HOME command (insert a # at the beginning of the line).

To make things easier for you, | have written a Windows script to create a link in the Explorer popup
menu. Copy this script into C:\Users\Public\Tool\mingw. Running this script (*Hint*: double-
click) will install (or remove if already installed) a pop-up context menu entry (MinGW Shell)
whenever you right-click on a folder in Windows Explorer.

Get arm-gcc.build and place it in C:\Users\Public\Tool\mylubuild. Open a MinGW Shell at this
location and run

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://www.youtube.com/watch?v=7HLTYJG5p3A&list=PLKQoMxsWIO1wrfPfnvZWFefhiAYrfrej6
http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:mingw_compiler
http://www.mingw.org/
https://sourceforge.net/projects/mingw/files/Installer/mingw-get
https://github.com/my1matrix/mingw4user/raw/master/msys.vbs
https://github.com/azman/my1ubuild/blob/master/arm-gcc.build

Last update: 2021/10/27 16:25 archive:pgt302lab00 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab00

TOOL PATH=/c/users/public/tool sh arm-gcc.build

The script will download the required binutils and gcc tarballs and build them. After a while, you
should get your cross compiler at C:\Users\Public\Tool\xtool-arm.

Pre-built Cross-compiler

Or, if you just want to get on with your work, here are what you need to download:

e MinGW (MD5:15e5e4d1f4b5a12f5¢16926567b629fb) - Minimalist GNU for Windows utilities,
which includes msys that provides a make environment. This is a local copy for your
convenience. If you want, you can install your own from 'original' source using mingw-get (this
is exactly what | used to create that zip file for you to download).

e ARM Cross-Compiler (MD5:876a2fb45779ae726ce07c4f78e63101) - The compiler that you need
to compile your bare-metal codes. Either build one on your own as mentioned earlier, or simply
use this.

Note that these binaries were built using Windows 7 running in VirtualBox on my Slackware 14.1
installation. But | have tested it on Windows 8 and Windows 10 machines, and | have no problems so
far.

Setting-up the cross compiler:

1. Once you have downloaded the files, extract them to C:\Users\Public\Tool (so, you should have
an xtool-arm folder there with a bin sub-directory). The location C:\Users\Public\Tool is referred
to as TOOLPATH in this course), you should have the MinGW compiler in %TOOLPATH%\mingw
and the ARM cross-compiler in %TOOLPATH%\xtool-arm.

2. It would be handy to have a shortcut on the Explorer popup menu to open up a MinGW shell in
the folder being viewed. Double-click msys . vbs (should be in %TOOLPATH%\mingw) to toggle
this feature. For the script to actually open up in a particular folder, browse to mingw folder and
edit msys\1.0\etc\profile and comment (insert '#' character at the beginning of) the last line
(should be cd $HOME).

o if you get a popup message saying Windows Script Host Access is disabled on
this machine, you will have to use registry editor to fix that. Type regedit ina
command prompt (you must be ad adminstrator for this... by default, the first account IS).
Look for HKEY CURRENT USER\SOFTWARE\Microsoft\Windows Script
Host\Settings - and make sure the Enabled value is set to 1. (You may also need to
change one in HKEY LOCAL_MACHINE)

3. To start working on a project, open your project folder in Windows Explorer and right-click to get
the usual popup menu. You should now have a 'MinGW Shell' link. It should open up a terminal
(shell) window in that folder. This is where we will do most of the compilation work at the early
stages (bare-metal programming).

Code Editor

As mentioned in your programming course, you can use any text editor to write your program (even
Windows Notepad!), but it is nice (and useful) to have at least syntax highlighting feature - a 'proper’
code editor. For this, | would like to recommend Geany, a GTK-based cross-platform text editor. | use
this a lot when coding on Linux. You can download a Windows installer here. It can be installed as

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/01/19 10:05

http://azman.unimap.edu.my/storage/mingw-20171031.zip
http://azman.unimap.edu.my/storage/mingw-20171031.zip.md5
http://www.mingw.org/
http://azman.unimap.edu.my/storage/xtool-arm-20171031.zip
http://azman.unimap.edu.my/storage/xtool-arm-20171031.zip.md5
http://www.geany.org/
http://www.geany.org/Download/Releases

2026/01/19 10:05 13/13 Lab Work 1 - Tools and Platform

normal user (no admin access required!).

Source Code Management

Most coding projects tend to use source code management (SCM) software, and | recommend git (I
have my own notes on this). It is also available on Windows.

Bare-metal Library Code

| have one available - mylbarepi.

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link: e
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab00 'f'-

Last update: 2021/10/27 16:25

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://git-scm.com/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:git
https://git-scm.com/download/win
http://github.com/azman/my1barepi
http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab00

	Lab Work 1 - Tools and Platform
	Development Board
	Introduction
	DevInfo: Board Schematic
	DevInfo: Peripherals Address Map
	DevInfo: GPIO Header Information

	Preparing SD Card
	Bare-metal Programming
	Installing Raspbian OS
	Raspbian-ready Plus Bare-metal Programming
	Raspberry Pi Zero as USB Client
	Advanced Configurations
	General Issues

	Development Tool
	Linux Platform
	Windows Platform
	Building a Cross-compiler
	Pre-built Cross-compiler
	Code Editor
	Source Code Management
	Bare-metal Library Code

