2026/02/02 15:22 1/13 Lab Work 2 - Bare-metal Programming

Lab Work 2 - Bare-metal Programming

The things | have here are now available at GitHub under project mylbarepi. | want to show that we
do not necessarily need an OS - sometimes a 'simple' bare-metal code is good enough for simple
applications.

The things | put here are mostly based on what | gather from the internet. Among the notable source
of information are:

¢ http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/index.html

e http://www.valvers.com/embedded-linux/raspberry-pi/step01-bare-metal-programming-in-cptl
(DEAD LINK?)

e https://github.com/dwelch67/raspberrypi

Compiling baremetal codes for Raspberry Pi

If you really want to start from the beginning, start from ACT I. But, if you are only interested in
getting things running a.s.a.p., go straight ahead to ACT IIl, where we use example codes from
mylbarepi.

ACT I: Blinking LED

The Hello world! of embedded systems (which usually has no display by default) is possible with the
availability of the ACT LED which is generally used to indicate (micro-)SD card access by an OS. Since

this is bare-metal, all your base are belong to us! ~~

The GPIO that is used for the ACT LED on R-Pi B+ is GPIO47 (was on GPIO16 previously). To access the
GPIO, some GPIO register information from the peripherals documentation introduced earlier:

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://github.com/azman/my1barepi
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/index.html
http://www.valvers.com/embedded-linux/raspberry-pi/step01-bare-metal-programming-in-cpt1
https://github.com/dwelch67/raspberrypi
http://github.com/azman/my1barepi

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

The GPIO has 41 registers. All accesses are assumed to be 32-bit.

Address Field Name Description Size E:fi
Ox 7E20 0000 GPFSELO | GPIO Function Select 0 32 R/W
Ox 7E20 0000 GPESELO | GPIO Function Select 0 32 R/W
Ox 7E20 0004 GPFSEL] | GPIO Function Select | 32 RW
Ox 7E20 0008 GPFSEL2 | GPIO Function Select 2 2 RIW
Ox 7E20 000C GPFSEL3 | GPIO Function Select 3 32 R/W
0Ox 7€20 0010 GPFSEL4 | GPIO Function Select 4 32 RIW
Ox 7E20 0014 GPFSELS | GPIO Function Select 5 32 RIW
Ox 7E20 0018 E Riserved : 5
Uﬁ_?_ff?f?lf GPSET0 | GPIO Pin Output Set 0 32 w
Ox 7E20 0020 GPSET1 | GPIO Pin Output Set 1 32 w
0Ox 7E20 0024 5 Reserved - 5
xR0 MEE GPCLRO | GPIO Pin Output Clear 32 hd
0x 7E20 002C GPCLRI | GPIO Pin Output Clear | 32 W

Notice that the addresses shown are the ones assigned by the MMU. Since we will not be writing any
codes to communicate with the MMU (at least for now), we need to access them using physical
memory. So, instead of accessing 0x7E200000 for GPFSELO, we will use address 0x20200000 (from
the memory map introduced earlier).

A look into GPFSELX registers:

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

2026/02/02 15:22 3/13 Lab Work 2 - Bare-metal Programming

Bit(s) |Field Name |Description Type |Reset
31-30 Reserved R 0
29-27 FSEL19 FSEL19 - Function Select 19 RW 0

000 = GPIO Pin 19 is an input

001 = GPIO Pin 19 is an output

100 = GPIO Pin 19 takes alternate function 0
101 = GPIO Pin 19 takes alternate function 1
110 = GPIO Pin 19 takes alternate function 2
111 = GPIO Pin 19 takes alternate function 3
011 = GPIO Pin 19 takes alternate function 4
010 = GPIO Pin 19 takes alternate function 5

26-24 FSEL18 . FSEL18 - Function Select 18 RW

0

23-21 FSEL17 FSEL17 - Function Select 17 RW 0
20-18 FSEL16 FSEL16 - Function Select 16 RW 1]
17-15 FSEL15 FSEL15 - Function Select 15 RW 1]
14-12 FSEL14 FSEL14 - Function Select 14 RW 0
11-9 FSEL13 FSEL13 - Function Select 13 RW 0
8-6 FSEL12 FSEL12 - Function Select 12 RW 0
53 FSEL11 FSEL11 - Function Select 11 RW 0
2-0 FSEL10 FSEL10 - Function Select 10 RWwW 0

Table 6-3 — GPIO Alternate function select register 1

These should be enough for us to write a software to blink that LED!

Doing it in Assembly

Note: All codes/files in this section is available in mylbarepi repository

A code to blink the ACT LED in assembly:

main.s

.section .boot
boot:

ldr r0,=0x20200000
@set gpio as output

mov rl,#1

1s1 rl,#21

str rl,[r0,#16]
loop:
@clr gpio

mov rl,#1

1s1 rl1,#15

str rl, [rO,#44]
@loop delay

mov r2,#0x3F0000
waitl:

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://github.com/azman/my1barepi/tree/master/my1barepi0_intro2a
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=0

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

r2,#
r2,#
bne waitl
@set gpio
rl,#
rl,#
rl, [rO,#
@ delay
r2,#
wait2:
r2,#
r2,#
bne wait2
@infinite
b

We also need a linker:

kernel.ld

SECTIONS {

. = 0x8000;

.text : { /** code segment */
*(.boot)
*(.text)

}

.data : { /** data segment */
*(.data)

¥

/DISCARD/ : { /** discard all other... */
()

}

A makefile to build bare-metal codes (assembly) for R-Pi:
Makefile
to generate raspberry pi bare-metal code (kernel.img)

0S) ,Windows NT
TOOLPATH ? c/users/public/tool/xtool-arm/bin

TOOLPATH ? home/share/tool/xtool-arm/bin
TOOLPFIX ? TOOLPATH)arm-none-eabi

LINKER = kernel.ld
TARGET = kernel.img

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=1
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=2

2026/02/02 15:22 5/13 Lab Work 2 - Bare-metal Programming

LST kernel.lst
MAP kernel.map

AFLAGS
LFLAGS no-undefined

help
echo "Targets: help clean pi <filename>.img"

pi: main.img

clean
rm -rf *.img lst *.map
*.elf *.0 deleted by compiler once done with

new: clean pi

img elf
TOOLPFIX)objcopy $< -0 binary $@
TOOLPFIX)objcopy $< -0 binary &(TARGET

elf 0 $(LINKER
TOOLPFIX)1ld LFLAGS) $< -Map $(MAP) -0 $@ -T $(LINKER
TOOLPFIX)objdump -d $@ LST

(0] S
TOOLPFIX)as $(AFLAGS) $%$< -o $@

Using this makefile, all you have to do is type make and a kernel.img file will be created. Simply copy
that file to the (micro-)SD card and you get yourself a system that blinks an LED! Cool, right?!

Doing itin C

Note: All codes/files in this section is available in mylbarepi repository

The equivalent code to blink the ACT LED in C:

main.c

#define GPIO BASE 0x20200000
#define GPIO FSEL 0x00
#define GPIO FSET 0x07
#define GPIO FCLR OxO0A
#define GPIO ACT LED 47

/** needs to be global, coz local needs stack => stack pointer! */
unsigned int *gpio, loop

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

https://github.com/azman/my1barepi/tree/master/my1barepi0_intro2c
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=3

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

void main(void

/** point to gpio access register */
gpio unsigned int GPIO BASE
/** configure gpio as output */

gpio[GPIO FSEL+(GPIO ACT LED/10 1 GPIO ACT LED%10)*3

/** main loop */
1

/** clear pin - on led! */

gpio[GPIO FCLR+(GPIO ACT LED/32 1 GPIO ACT LED%32

/** delay a bit to allow us see the light! */
loop=0; Loop<0x3FO000; Loop
/** set pin - off led! */

gpio!GPIO FSET+(GPIO ACT LED/32 1 GPIO ACT LED*32

/** delay a bit to allow us see the blink! */
loop=0; loop<0x3FOO00; Loop

A slightly modified linker file:

kernel.ld
SECTIONS {
. = 0x8000;
.text : { /** code segment */
KEEP(*(.text.startup))
*(, text)
}
.data : { /** data segment */
* (COMMON)
*(.data)
¥
/DISCARD/ : { /** discard all other... */
()
}
}

And, a slightly modified makefile:

Makefile
to generate raspberry pi bare-metal code (kernel.img)

0S) ,Windows NT
TOOLPATH ? c/users/public/tool/xtool-arm/bin

TOOLPATH ? home/share/tool/xtool-arm/bin

http://azman.unimap.edu.my/dokuwiki/

Printed on 2026/02/02 15:22

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=4
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=5

2026/02/02 15:22 7/13 Lab Work 2 - Bare-metal Programming

TOOLPFIX ? TOOLPATH)arm-none-eabi

LINKER kernel. ld
TARGET = kernel.img
LST kernel.lst
MAP = kernel.map

CFLAGS mfpu=vfp -mfloat-abi=hard -march=armv6zk -mtune=armll76jzf-s
CFLAGS nostdlib -nostartfiles -ffreestanding -Wall

LFLAGS no-undefined

help

echo "Targets: help clean pi <filename>.img"
pi: main.img
clean
rm -rf img lst *.map
*.elf *.0 deleted by compiler once done with
new: clean pi
img elf
TOOLPFIX)objcopy $< -0 binary $@
TOOLPFIX)objcopy $< -0 binary $(TARGET
elf 0 $(LINKER
TOOLPFIX)ld $(LFLAGS) $< -Map $(MAP) -o $@ -T $(LINKER
TOOLPFIX)objdump -d $@ LST

(0] C
TOOLPFIX)gcc CFLAGS C $< -0 %@

And you get a bigger binary of the same thing (as discussed in lecture)! Also, you should notice that
even though both programs (the main.s and main.c uses the same loop value (0x3f0000), the
kernel.img created from main.c will result in a slower blinking LED.

Utilizing C Macro Definition

The C code can be rewritten to utilize C macro (function macro).

main.c

#define GPIO BASE 0x20200000
#define GPIO FSEL 0x00

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=6

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

#define GPIO FSET 0x07
#define GPIO FCLR Ox0A
#define GPIO ACT LED 47

/** using macros :p */

#define gpio output(x) gpio[GPIO FSEL+(x/10)]=1<<(x%10)*3
#define gpio clr(x) gpio[GPIO FCLR+(x/32)]=1<<(x%32)
#define gpio set(x) gpio[GPIO FSET+(x/32)]=1<<(x%32)

/** volatile coz -02 compiler option would otherwise kill them? */
volatile unsigned int *gpio, loop

void main(void

/** point to gpio access register */
gpio unsigned int*) GPIO BASE
/** configure gpio as output */
gpio output(GPIO ACT LED
/** main loop */
1

/** clear pin! */

gpio clr(GPIO ACT LED

/** delay a bit to allow us see the blink! */
loop=0; Loop=0x200000; Loop

/** set pin! */

gpio set(GPIO ACT LED

/** delay a bit to allow us see the blink! */
loop=0; 1loop<0x200000; Loop

ACT lI: From Switch to LED

A system is rarely complete without an input. Let us now try to write a software that reads the status
of a button (a.k.a. reset switch) and drive an LED accordingly.

Something About Input

Here are some information that is needed to read GPIO pin status.

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

2026/02/02 15:22 9/13 Lab Work 2 - Bare-metal Programming

Some relevant registers

Read/
Field Nam ription i
Address eld Name Descriptio Size | e
Ox 7E20 0034 GPLEVO | GPIO Pin Level 0 32 "
 Ox7E200038 | GpLEVI |GPIO Pin Level 1 | 3 | R
Ox 7E20 003C) Rissraed - -
Ox 7E20 0040 GPEDS0 | GPIO Pin Event Detect Status 0 32 R/W
Ox 7E20 0044 GPEDS! | GPIO Pin Event Detect Status | 32 R/W
Ox JE20 0048 - Reserved i
Ox 7E20 004C GPRENO | GPIO Pin Rising Edge Detect Enable 0 32 R/W
Ox 7E20:0050 GPREN1 | GPIO Pin Rising Edge Detect Enable 1 32 RIW
Ox 7E20 0054 = Reserved . -
Ox 7£20 0058 GPFENO | GPIO Pin Falling Edge Detect Enable 0 32 R/W
Ox 7E20 005C GPFEN]I GPIO Pin Falling Edge Detect Enable 1 32 R/W

So, to actually check the pin status we need to check the following.

GPIO Pin Level Registers (GPLEVn)

SYNOPSIS The pin level registers return the actual value of the pin. The LEV{n} field gives the
value of the respective GPIO pin.

Bit(s) |Field Name |Description Type |Reset

31-0 | LEVn (n=0.31) |0 = GPIO pin nis low RW 0
0 = GPIO pin nis high

Table 6-12 - GPIO Level Register 0

This is a simple program that detects an input level and updates an LED accordingly.

main.c

#define GPIO BASE 0x20200000
#define GPIO FSEL 0x00
#define GPIO FSET 0x07
#define GPIO FCLR Ox0A
#define GPIO FGET 0x0D

________ */
#define MY_LED 47
#define MY_SWITCH 3

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=7

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

/** using macros :p */

#define gpio output(x) gpio[GPIO FSEL+(x/10)]=1<<(x%10)*3
#define gpio clr(x) gpio[GPIO FCLR+(x/32)]=1<<(x%32)
#define gpio set(x) gpio[GPIO FSET+(x/32)]=1<<(x%32)
#define gpio get(x) (gpio[GPIO FGET+(x/32)]1&(1<<(x%32)))

/* ___
_______ */

volatile unsigned int *gpio

/* ...
_______ */

void main(void

/** base register address */

gpio unsigned int GPIO BASE

/** configure gpio as output, by default it is an input pin */
gpio output (MY LED

/** main loop */

while(1

17(gpio_get(MY SWITCH)) gpio set(MY LED
else gpio clr(MY LED

Something About Input (Events)

Notice that we can also detect events (and edges)!

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

2026/02/02 15:22

11/13

Lab Work 2 - Bare-metal Programming

Address Field Name Description Size z,ef:i
Ox 7E20 0060 = Resarved -
uTE0 oad GPHENO | GPIO Pin High Detect Enable 0 32 RW
Ox 7E20 0068 GPHENI1 GPIO Pin High Detect Enable | 32 R'W
Ox 720 006C _ Reserved - -
Ox 7E20 0070 GPLENO | GPIO Pin Low Detect Enable 0 32 RIW
Ox 7E20 0074 GPLEN1 | GPIO Pin Low Detect Enable 1 32 RIW
Ox 7E20 0078 . Reserved - -
Ow 7£20 DOVC GPAREND | GPIO Pin Async. Rising Edge Detect 0 32 R'W
Ox 7E20 0080 GPAREN] | GPIO Pin Async. Rising Edge Detect 1 32 RIW
Ox 7E20 0084 5 Riisrved - -
Ox 7E20 0088 GPAFENO | GPIO Pin Async. Falling Edge Detect 0 32 R/W
0x 7E20 008C GPAFEN1 | GPIO Pin Asyne. Falling Edge Detect | 32 R/W
0x 7E20 0090 i Raisired - .
Ox 7E20 0094 GPPUD | GPIO Pin Pull-up/down Enable 32 RIW
Ox 78200098 | GPPUDCLKO |GPIO Pin Pull-up/down Enable Clock 0 32 RIW
O0x7E20003C | GppUDCLK! |GPIO Pin Pull-up/down Enable Clock 1 32 R/W
Ox 7E20 00AD i Resnrd - -
Ox 7E20 00BO . Test 4 R/W

Info on event detect status registers and edge detect enable registers

GPIO Event Detect Status Registers (GPEDSn)

SYNOPSIS

The event detect status registers are used to record level and edge events on the

GPIO pins. The relevant bit in the event detect status registers is set whenever: 1)
an edge is detected that matches the type of edge programmed in the rising/falling
edge detect enable registers, or 2) a level is detected that matches the type of level
programmed in the high/low level detect enable registers. The bit is cleared by
writing a “1” to the relevant bit.

The interrupt controller can be programmed to interrupt the processor when any of
the status bits are set. The GPIO peripheral has three dedicated interrupt lines.
Each GPIO bank can generate an independent interrupt. The third line generates a
single interrupt whenever any bit is set.

Bit(s)

Field Name

Description

Type

Reset

310

EDSn (n=0..31)

0 = Event not detected on GPIC pinn
1 = Event detected on GPIO pinn

RwW

0

Table 6-14 — GPIO Event Detect 5tatus Register 0

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

GPIO Asynchronous rising Edge Detect Enable Registers (GPARENN)

Synopsis The asynchronous rising edge detect enable registers define the pins for which a
asynchronous rising edge transition sets a bit in the event detect status registers
(GPEDSR).

Asynchronous means the incoming signal is not sampled by the system clock, As such
rising edges of very short duration can be detected.

Bit(s) |Field Name Description Type Reset

31-0 | ARENn (n=0..31) |0 = Asynchronous rising edge detect disabled on GPIO pin | RW 0
n.

1 = Asynchronous rising edge on GPIO pin n sets
corresponding bit in EDSn.

Table 6-24 — GPI0 Asynchronous rising Edge Detect Status Register 0

The event(s) status would be very useful, but we will pin this up and revisit the topic later.

ACT Ill : Using mylbarepi

Using mylbarepi makes things easier.
Starting with the basics...

e TOO Intro

e TO1 GPIO - Manage the I/O pins
e TO2 Timer - Manage time

e TO3 Interrupt - Manage events

Revisiting Basic Digital Interfacing

Unlike boolean logic, digital electronics has a third-state condition (aptly named tri-state condition)
which cannot be fit into the common VDD = logic 1 and GND = logic 0 presumptions. A more
suitable definition for logic 1 in digital electronics is node charging/discharging capabilities: logic 1 is
the ability to charge a node to voltage VDD (actually over a certain threshold, but that is for another
discussion), and logic 0 is the ability to discharge a node to GROUND reference voltage.

Logic 1 - Node charged to VDD|Logic O - Node discharged to GND
(]]

Also known as sourcing current Also known as sinking current

Using this, the tri-state condition is when a node is NOT being charged or discharged (i.e. floating, left
for other device to pull the node to VDD or GND). This is very useful since there are times when a tri-
state condition is required (e.g. 12C interface, where open collector/drain circuit is commonly used).

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

https://github.com/azman/my1barepi/tree/master/t00_intro4u
https://github.com/azman/my1barepi/tree/master/t01_gpio
https://github.com/azman/my1barepi/tree/master/t02_timer
https://github.com/azman/my1barepi/tree/master/t03_interrupt
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt302:logic1.png
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt302:logic0.png

2026/02/02 15:22 13/13 Lab Work 2 - Bare-metal Programming

Things To Tinker

Thing 1 Using the given example code, try to blink an external LED (off the Pi, on a breadboard). You
will have to select a GPIO pin for that. Then, try to do 2 alternate-blinking LEDs. Investigate the issue
when the two selected GPIO number have the same digit on the 10s (e.g. 11 and 16, 24 and 22).

Thing 2 Based on the GPIO input example, try to write a code that blinks an external LED ONLY when
the input is at logic 'LO". Otherwise, the LED should be turned OFF.

Thing 3 Use a seven segment. Create a simple up (OR down) counter.

Thing 4 Upgrade the previous Thingy - use reset switches to start/stop the counting and control the
direction.

From:

http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP %
Permanent link: e A

http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01 l'L' Ly

Last update: 2020/10/21 09:26

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

	Lab Work 2 - Bare-metal Programming
	Compiling baremetal codes for Raspberry Pi
	ACT I: Blinking LED
	Doing it in Assembly
	Doing it in C
	Utilizing C Macro Definition

	ACT II: From Switch to LED
	Something About Input
	Something About Input (Events)

	ACT III : Using my1barepi
	Revisiting Basic Digital Interfacing
	Things To Tinker

