
2026/02/02 15:22 1/13 Lab Work 2 - Bare-metal Programming

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Lab Work 2 - Bare-metal Programming

The things I have here are now available at GitHub under project my1barepi. I want to show that we
do not necessarily need an OS - sometimes a 'simple' bare-metal code is good enough for simple
applications.

The things I put here are mostly based on what I gather from the internet. Among the notable source
of information are:

http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/index.html
http://www.valvers.com/embedded-linux/raspberry-pi/step01-bare-metal-programming-in-cpt1
(DEAD LINK?)
https://github.com/dwelch67/raspberrypi

Compiling baremetal codes for Raspberry Pi

If you really want to start from the beginning, start from ACT I. But, if you are only interested in
getting things running a.s.a.p., go straight ahead to ACT III, where we use example codes from
my1barepi.

ACT I: Blinking LED

The Hello world! of embedded systems (which usually has no display by default) is possible with the
availability of the ACT LED which is generally used to indicate (micro-)SD card access by an OS. Since

this is bare-metal, all your base are belong to us!

The GPIO that is used for the ACT LED on R-Pi B+ is GPIO47 (was on GPIO16 previously). To access the
GPIO, some GPIO register information from the peripherals documentation introduced earlier:

https://github.com/azman/my1barepi
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/index.html
http://www.valvers.com/embedded-linux/raspberry-pi/step01-bare-metal-programming-in-cpt1
https://github.com/dwelch67/raspberrypi
http://github.com/azman/my1barepi

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

Notice that the addresses shown are the ones assigned by the MMU. Since we will not be writing any
codes to communicate with the MMU (at least for now), we need to access them using physical
memory. So, instead of accessing 0x7E200000 for GPFSEL0, we will use address 0x20200000 (from
the memory map introduced earlier).

A look into GPFSELx registers:

2026/02/02 15:22 3/13 Lab Work 2 - Bare-metal Programming

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

These should be enough for us to write a software to blink that LED!

Doing it in Assembly

Note: All codes/files in this section is available in my1barepi repository

A code to blink the ACT LED in assembly:

main.s

.section .boot
boot:
 ldr r0,=0x20200000
@set gpio as output
 mov r1,#1
 lsl r1,#21
 str r1,[r0,#16]
loop:
@clr gpio
 mov r1,#1
 lsl r1,#15
 str r1,[r0,#44]
@loop delay
 mov r2,#0x3F0000
wait1:

https://github.com/azman/my1barepi/tree/master/my1barepi0_intro2a
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=0

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

 sub r2,#1
 cmp r2,#0
 bne wait1
@set gpio
 mov r1,#1
 lsl r1,#15
 str r1,[r0,#32]
@loop delay
 mov r2,#0x3F0000
wait2:
 sub r2,#1
 cmp r2,#0
 bne wait2
@infinite loop
 b loop

We also need a linker:

kernel.ld

SECTIONS {
 . = 0x8000;
 .text : { /** code segment */
 *(.boot)
 *(.text)
 }
 .data : { /** data segment */
 *(.data)
 }
 /DISCARD/ : { /** discard all other... */
 ()
 }
}

A makefile to build bare-metal codes (assembly) for R-Pi:

Makefile

to generate raspberry pi bare-metal code (kernel.img)

ifeq ($(OS),Windows_NT)
TOOLPATH ?= /c/users/public/tool/xtool-arm/bin/
else
TOOLPATH ?= /home/share/tool/xtool-arm/bin/
endif
TOOLPFIX ?= $(TOOLPATH)arm-none-eabi-

LINKER = kernel.ld
TARGET = kernel.img

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=1
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=2

2026/02/02 15:22 5/13 Lab Work 2 - Bare-metal Programming

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

LST = kernel.lst
MAP = kernel.map

AFLAGS +=
LFLAGS += --no-undefined

help:
 @echo "Targets: help clean pi <filename>.img"

pi: main.img

clean:
 rm -rf *.img *.lst *.map
*.elf *.o deleted by compiler once done with

new: clean pi

%.img: %.elf
 $(TOOLPFIX)objcopy $< -O binary $@
 $(TOOLPFIX)objcopy $< -O binary $(TARGET)

%.elf: %.o $(LINKER)
 $(TOOLPFIX)ld $(LFLAGS) $< -Map $(MAP) -o $@ -T $(LINKER)
 $(TOOLPFIX)objdump -d $@ > $(LST)

%.o: %.s
 $(TOOLPFIX)as $(AFLAGS) $< -o $@

Using this makefile, all you have to do is type make and a kernel.img file will be created. Simply copy
that file to the (micro-)SD card and you get yourself a system that blinks an LED! Cool, right?!

Doing it in C

Note: All codes/files in this section is available in my1barepi repository

The equivalent code to blink the ACT LED in C:

main.c

#define GPIO_BASE 0x20200000
#define GPIO_FSEL 0x00
#define GPIO_FSET 0x07
#define GPIO_FCLR 0x0A
#define GPIO_ACT_LED 47

/** needs to be global, coz local needs stack => stack pointer! */
unsigned int *gpio, loop;

https://github.com/azman/my1barepi/tree/master/my1barepi0_intro2c
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=3

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

void main(void)
{
 /** point to gpio access register */
 gpio = (unsigned int*) GPIO_BASE;
 /** configure gpio as output */
 gpio[GPIO_FSEL+(GPIO_ACT_LED/10)] = 1 << (GPIO_ACT_LED%10)*3;
 /** main loop */
 while(1)
 {
 /** clear pin - on led! */
 gpio[GPIO_FCLR+(GPIO_ACT_LED/32)] = 1 << (GPIO_ACT_LED%32);
 /** delay a bit to allow us see the light! */
 for(loop=0;loop<0x3F0000;loop++);
 /** set pin - off led! */
 gpio[GPIO_FSET+(GPIO_ACT_LED/32)] = 1 << (GPIO_ACT_LED%32);
 /** delay a bit to allow us see the blink! */
 for(loop=0;loop<0x3F0000;loop++);
 }
}

A slightly modified linker file:

kernel.ld

SECTIONS {
 . = 0x8000;
 .text : { /** code segment */
 KEEP(*(.text.startup))
 *(.text)
 }
 .data : { /** data segment */
 *(COMMON)
 *(.data)
 }
 /DISCARD/ : { /** discard all other... */
 ()
 }
}

And, a slightly modified makefile:

Makefile

to generate raspberry pi bare-metal code (kernel.img)

ifeq ($(OS),Windows_NT)
TOOLPATH ?= /c/users/public/tool/xtool-arm/bin/
else
TOOLPATH ?= /home/share/tool/xtool-arm/bin/

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=4
http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=5

2026/02/02 15:22 7/13 Lab Work 2 - Bare-metal Programming

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

endif
TOOLPFIX ?= $(TOOLPATH)arm-none-eabi-

LINKER = kernel.ld
TARGET = kernel.img
LST = kernel.lst
MAP = kernel.map

CFLAGS += -mfpu=vfp -mfloat-abi=hard -march=armv6zk -mtune=arm1176jzf-s
CFLAGS += -nostdlib -nostartfiles -ffreestanding -Wall
LFLAGS += --no-undefined

help:
 @echo "Targets: help clean pi <filename>.img"

pi: main.img

clean:
 rm -rf *.img *.lst *.map
*.elf *.o deleted by compiler once done with

new: clean pi

%.img: %.elf
 $(TOOLPFIX)objcopy $< -O binary $@
 $(TOOLPFIX)objcopy $< -O binary $(TARGET)

%.elf: %.o $(LINKER)
 $(TOOLPFIX)ld $(LFLAGS) $< -Map $(MAP) -o $@ -T $(LINKER)
 $(TOOLPFIX)objdump -d $@ > $(LST)

%.o: %.c
 $(TOOLPFIX)gcc $(CFLAGS) -c $< -o $@

And you get a bigger binary of the same thing (as discussed in lecture)! Also, you should notice that
even though both programs (the main.s and main.c uses the same loop value (0x3f0000), the
kernel.img created from main.c will result in a slower blinking LED.

Utilizing C Macro Definition

The C code can be rewritten to utilize C macro (function macro).

main.c

/*---
-------*/
#define GPIO_BASE 0x20200000
#define GPIO_FSEL 0x00

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=6

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

#define GPIO_FSET 0x07
#define GPIO_FCLR 0x0A
#define GPIO_ACT_LED 47
/*---
-------*/
/** using macros :p */
#define gpio_output(x) gpio[GPIO_FSEL+(x/10)]=1<<(x%10)*3
#define gpio_clr(x) gpio[GPIO_FCLR+(x/32)]=1<<(x%32)
#define gpio_set(x) gpio[GPIO_FSET+(x/32)]=1<<(x%32)
/*---
-------*/
/** volatile coz -O2 compiler option would otherwise kill them? */
volatile unsigned int *gpio, loop;
/*---
-------*/
void main(void)
{
 /** point to gpio access register */
 gpio = (unsigned int*) GPIO_BASE;
 /** configure gpio as output */
 gpio_output(GPIO_ACT_LED);
 /** main loop */
 while(1)
 {
 /** clear pin! */
 gpio_clr(GPIO_ACT_LED);
 /** delay a bit to allow us see the blink! */
 for(loop=0;loop<0x200000;loop++);
 /** set pin! */
 gpio_set(GPIO_ACT_LED);
 /** delay a bit to allow us see the blink! */
 for(loop=0;loop<0x200000;loop++);
 }
}
/*---
-------*/

ACT II: From Switch to LED

A system is rarely complete without an input. Let us now try to write a software that reads the status
of a button (a.k.a. reset switch) and drive an LED accordingly.

Something About Input

Here are some information that is needed to read GPIO pin status.

2026/02/02 15:22 9/13 Lab Work 2 - Bare-metal Programming

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Some relevant registers

So, to actually check the pin status we need to check the following.

This is a simple program that detects an input level and updates an LED accordingly.

main.c

/*---
-------*/
#define GPIO_BASE 0x20200000
#define GPIO_FSEL 0x00
#define GPIO_FSET 0x07
#define GPIO_FCLR 0x0A
#define GPIO_FGET 0x0D
//*--
--------*/
#define MY_LED 47
#define MY_SWITCH 3
/*---

http://azman.unimap.edu.my/dokuwiki/doku.php?do=export_code&id=archive:pgt302lab01&codeblock=7

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

-------*/
/** using macros :p */
#define gpio_output(x) gpio[GPIO_FSEL+(x/10)]=1<<(x%10)*3
#define gpio_clr(x) gpio[GPIO_FCLR+(x/32)]=1<<(x%32)
#define gpio_set(x) gpio[GPIO_FSET+(x/32)]=1<<(x%32)
#define gpio_get(x) (gpio[GPIO_FGET+(x/32)]&(1<<(x%32)))
/*---
-------*/
volatile unsigned int *gpio;
/*---
-------*/
void main(void)
{
 /** base register address */
 gpio = (unsigned int*) GPIO_BASE;
 /** configure gpio as output, by default it is an input pin */
 gpio_output(MY_LED);
 /** main loop */
 while(1)
 {
 if(gpio_get(MY_SWITCH)) gpio_set(MY_LED);
 else gpio_clr(MY_LED);
 }
}
/*---
-------*/

Something About Input (Events)

Notice that we can also detect events (and edges)!

2026/02/02 15:22 11/13 Lab Work 2 - Bare-metal Programming

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Info on event detect status registers and edge detect enable registers

Last update: 2020/10/21 09:26 archive:pgt302lab01 http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/02/02 15:22

The event(s) status would be very useful, but we will pin this up and revisit the topic later.

ACT III : Using my1barepi

Using my1barepi makes things easier.

Starting with the basics…

T00 Intro
T01 GPIO - Manage the I/O pins
T02 Timer - Manage time
T03 Interrupt - Manage events

Revisiting Basic Digital Interfacing

Unlike boolean logic, digital electronics has a third-state condition (aptly named tri-state condition)
which cannot be fit into the common VDD = logic 1 and GND = logic 0 presumptions. A more
suitable definition for logic 1 in digital electronics is node charging/discharging capabilities: logic 1 is
the ability to charge a node to voltage VDD (actually over a certain threshold, but that is for another
discussion), and logic 0 is the ability to discharge a node to GROUND reference voltage.

Logic 1 - Node charged to VDD Logic 0 - Node discharged to GND

Also known as sourcing current Also known as sinking current

Using this, the tri-state condition is when a node is NOT being charged or discharged (i.e. floating, left
for other device to pull the node to VDD or GND). This is very useful since there are times when a tri-
state condition is required (e.g. I2C interface, where open collector/drain circuit is commonly used).

https://github.com/azman/my1barepi/tree/master/t00_intro4u
https://github.com/azman/my1barepi/tree/master/t01_gpio
https://github.com/azman/my1barepi/tree/master/t02_timer
https://github.com/azman/my1barepi/tree/master/t03_interrupt
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt302:logic1.png
http://azman.unimap.edu.my/dokuwiki/lib/exe/fetch.php?media=archive:pgt302:logic0.png

2026/02/02 15:22 13/13 Lab Work 2 - Bare-metal Programming

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Things To Tinker

Thing 1 Using the given example code, try to blink an external LED (off the Pi, on a breadboard). You
will have to select a GPIO pin for that. Then, try to do 2 alternate-blinking LEDs. Investigate the issue
when the two selected GPIO number have the same digit on the 10s (e.g. 11 and 16, 24 and 22).

Thing 2 Based on the GPIO input example, try to write a code that blinks an external LED ONLY when
the input is at logic 'LO'. Otherwise, the LED should be turned OFF.

Thing 3 Use a seven segment. Create a simple up (OR down) counter.

Thing 4 Upgrade the previous Thingy - use reset switches to start/stop the counting and control the
direction.

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

Last update: 2020/10/21 09:26

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=archive:pgt302lab01

	Lab Work 2 - Bare-metal Programming
	Compiling baremetal codes for Raspberry Pi
	ACT I: Blinking LED
	Doing it in Assembly
	Doing it in C
	Utilizing C Macro Definition

	ACT II: From Switch to LED
	Something About Input
	Something About Input (Events)

	ACT III : Using my1barepi
	Revisiting Basic Digital Interfacing
	Things To Tinker

