
2026/01/18 11:49 1/6 Git Stuff

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Git Stuff

From here,

“Git is an open source, distributed version control system designed to handle everything from small to
very large projects with speed and efficiency.”

Some useful configurations before starting with git. I have this simple script that I run on a new
machine I want to work on.

Create, Clone, Add, Commit

Create new repo

$ mkdir /path/to/project ; cd /path/to/project ; git init

Clone a repo

$ git clone git://server/path/to/project.git

Add everything in current path to repo

$ git add .

Add file(s) to repo @ next commit

$ git add <file1> <file2>

Commit changes added

$ git commit

Commit ALL changes in currently tracked files

$ git commit -a

Create/Apply Patches

Create a diff patch

$ git diff COMMIT_1 COMMIT_2 > PATCHFILE

Apply a diff patch

https://git-scm.com
https://codeberg.org/azman/my1shell/src/branch/master/gitstart

Last update: 2024/02/28 09:54 notes:git http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:git

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/01/18 11:49

$ git apply < PATCHFILE

Create a formatted patch (can also use -n where n is the number of previous commits to create
patches for)

$ git format-patch -o /path/to/patches/ -1

Apply a formatted patch

$ git am < PATCHFILE

Apply a formatted patch (create new date)

$ git am --ignore-date < PATCHFILE

Create formatted patches (note: sha1id1..sha1id2 is the range of commits used to create patches)

$ git format-patch -o /path/to/patches/ sha1id1..sha1id2

To rename created patch(es) with commit timestamp

 for a in *.patch ; do l=$(cat $a|grep 'Date: ') ; d=$(date +"%Y%m%d%H%M%S"
-d "${l#*: }") ; mv $a "$d${a:4}" ; done

To apply the patches (stopping on error)

for a in ~/temp/patches/*.patch ; do git am <$a ; [$? -ne 0] && break;
done

Branching/Merging

Create new local branch

$ git branch <local-branch>

Remove local branch (-D to force)

$ git branch -d <local-branch>

Create a local branch to track remote branch

$ git checkout --track -b <local-branch> <remote-branch>

Set current local branch to track a remote branch

$ git branch -u <remote>/<branch>

2026/01/18 11:49 3/6 Git Stuff

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

Basic Management

Checkout specific commit

$ git checkout COMMIT

Force reset to a specific commit

$ git reset --hard [COMMIT]

Clean up untracked file(s)/folder(s)

$ git clean -f -d

Re-committing to add forgotten items

$ git reset --soft HEAD^
<do the forgotten thingy, if necessary do a git add>
$ git commit

Changing First Commit Message

checkout the root commit
git checkout <sha1-of-root>
amend the commit
git commit --amend
rebase all the other commits in master onto the amended root
git rebase --onto HEAD HEAD master

Manage Tag(s)

git tag
git tag <newtag>
git tag -d <oldtag>

git fetch --tags
git push --tags

(this works on github - unknown elsewhere)
git push <remote> :<oldtag>

Other commands:

git config --list
git config remote.origin.url NEW_URL
git pull ANOTHER_URL master

git branch -vv
git branch -u <remote>/<remote_branch> <local_branch>

Last update: 2024/02/28 09:54 notes:git http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:git

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/01/18 11:49

git bundle create <somefile> HEAD
git pull <somefile> HEAD

git archive --format=tar --prefix=<folder-prefix>/ <tag/commit> | gzip
>/path/to/tarball-release.tar.gz

Merge to master branch while on other branch (without checkout):

git fetch . <src_branch>:master

Check log for master branch while on other branch (without checkout):

git log master

Merge specific file(s) from another branch

git checkout <src_branch> file1 [file2 file3...]

Create a GIT repository on shared hosting (with SSH access) and publish through HTTP

sshfs -p <ssh-port> -o workaround=rename user@server:public_html
/local/mount/path
cd /local/mount/path
mkdir repo
cd repo
git clone --bare /local/repo <repo-name>
cd <repo-name>
git --bare update-server-info
cp hooks/post-update.sample hooks/post-update

Running GIT Daemon:

git daemon --reuseaddr --base-path=/path/to/repos --export-all --verbose --
enable=receive-pack

Advanced Git

Merging two different repositories with histories intact (the new one on top of the old)

assuming repoA and repoB (repoB the same project with different code-base)
we want to have repoB override repoA, but want to keep repoA history within that project
so, first create a remote on repoA pointing to repoB

git remote add <repoB_name> <repoB_url>

fetch repoB history?

git fetch --all

2026/01/18 11:49 5/6 Git Stuff

Azman @UniMAP - http://azman.unimap.edu.my/dokuwiki/

here is where we overwrite repoA (but keep the history…)

git merge repoB_name/master --strategy-option theirs --allow-
unrelated-histories

Rescuing from git reset –hard

Note: This DOES NOT work all the time, I guess… because git reset –hard should remove every
record. But, this may… (and in my case, once, did) work.

git reset HEAD@{1}

Remove remote branch

git push origin --delete {branch}

If the remote branch has been removed, use this to remove local reference

git remote update origin --prune

Prepare diff with binary content

git diff-index master --binary >bin.patch

List tracked files (recursively)

git ls-tree --name-only -r <branch>

List untracked files

git ls-tree --others

List ignored files

git ls-files --ignored --exclude-standard

Local Management

Fetch updates from downstream (assume in branch staging)

$ for that in $(find . -not \(-path "./.git/*" -prune \) -type f) ; do git
checkout staging ${that:2} ; done

Dumping ground… will sort this out later…

list github remote
here=$(pwd) ; for a in $(find $here -mindepth 1 -maxdepth 1 -type d) ; do
base=$(basename $a) ; pick= ; for b in $(cat ~/temp/github.txt) ; do [

Last update: 2024/02/28 09:54 notes:git http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:git

http://azman.unimap.edu.my/dokuwiki/ Printed on 2026/01/18 11:49

"$base" = "$(basename $b)"] && pick=$b && break ; done ; [! -z "$pick"]
&& continue ; pick=$a ; cd $pick ; what=$(git remote -v | grep -e "^github"
| grep fetch) ; [-z "$what"] && continue ; echo "-- REMOVE!
($pick)($what)" ; done ; cd $here

list & remove github remote
here=$(pwd) ; for a in $(find $here -mindepth 1 -maxdepth 1 -type d) ; do
base=$(basename $a) ; pick= ; for b in $(cat ~/temp/github.txt) ; do [
"$base" = "$(basename $b)"] && pick=$b && break ; done ; [! -z "$pick"]
&& continue ; pick=$a ; cd $pick ; what=$(git remote -v | grep -e "^github"
| grep fetch) ; [-z "$what"] && continue ; echo "-- REMOVE!
($pick)($what)" ; git remote rm github ; done ; cd $here

list github branch
here=$(pwd) ; for a in $(find $here -mindepth 1 -maxdepth 1 -type d) ; do
base=$(basename $a) ; pick= ; for b in $(cat ~/temp/github.txt) ; do [
"$base" = "$(basename $b)"] && pick=$b && break ; done ; [! -z "$pick"]
&& continue ; pick=$a ; cd $pick ; what=$(git branch | grep github) ; [-z
"$what"] && continue ; that=$(git remote -v | grep -e "^github" | grep
fetch) ; [! -z "$that"] && continue ; echo "-- Branch: $pick ($what)" ;
done ; cd $here

list & remove github branch
here=$(pwd) ; for a in $(find $here -mindepth 1 -maxdepth 1 -type d) ; do
base=$(basename $a) ; pick= ; for b in $(cat ~/temp/github.txt) ; do [
"$base" = "$(basename $b)"] && pick=$b && break ; done ; [! -z "$pick"]
&& continue ; pick=$a ; cd $pick ; what=$(git branch | grep github) ; [-z
"$what"] && continue ; that=$(git remote -v | grep -e "^github" | grep
fetch) ; [! -z "$that"] && continue ; echo "-- Branch: $pick ($what)" ;
git branch -D github ; done ; cd $here

From:
http://azman.unimap.edu.my/dokuwiki/ - Azman @UniMAP

Permanent link:
http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:git

Last update: 2024/02/28 09:54

http://azman.unimap.edu.my/dokuwiki/
http://azman.unimap.edu.my/dokuwiki/doku.php?id=notes:git

	Git Stuff
	Create, Clone, Add, Commit
	Create/Apply Patches
	Branching/Merging
	Basic Management
	Advanced Git
	Local Management

