

Using Raspberry Pi as Data Server
for Embedded Systems

Course Schedule

● Session 1: Introduction
● Raspberry Pi Development Board
● Data Server Systems Overview

● Session 2: Programming Basics
● Database access and SQL
● File access

Course Schedule (cont.)

● Session 3: Server-side Programming
● C-based (mongoose/my1goose)
● PHP-based (my1apisrv)

● Session 4: Client-side Programming
● HTML/CSS/Javascript
● Graphs with D3js

Reminder

● Compressed contents
● Wide coverage with limited days

● Selected topic/coverage
● Focusing on what is required

● Feel free to ask for more information!

Session 1: Introduction

Raspberry Pi Development Board

Session Overview

● Raspberry Pi Development
● Platform Specifications
● Bare-metal / OS Selection
● Board Preparations
● Simple GPIO access

● Data Server Systems
● Embedded Data Server
● Pure Data Server

Raspberry Pi

● SBC to promote computer science in schools
● Raspberry Pi Foundation (http://raspberrypi.org)
● “… computer to inspire children ...”

● Low cost, yet huge features
● $25 - $35 SBC board with graphics engine

● Commercial Facts:
● First batch (10,000 units) were sold before made!
● (October 2014) 3.8 million boards sold

Raspberry Pi (cont.)

● Main models (as of 20160902)
● Pi 1 (Model A,A+,B,B+), Pi 2, Pi 3
● Pi Compute Module, Pi Zero!

● Pi 1 Model B+ with Broadcom’s BCM2835
● SoC package with 512MB SDRAM
● CPU: 700 MHz ARM1176JZF-S (ARM11 core,

ARMv6 ISA)
● GPU: 250 MHz Broadcom VideoCore IV (with

OpenGL engine and MPEG codecs

Endless Possibilities?

● What we have
● SBC capable of running Linux
● USB Hubs, Network capable, Graphics Engine
● Hardware Floating-point Unit
● Very portable/mobile (small sized)

● Supported Extensions
● Camera – supported and configurable
● Gertboard – educational I/O interface board
● HAT (Hardware Attached on Top)

Bare-metal Codes

● First code to run on hardware
● Low-level hardware access
● No OS (bare-metal codes becomes the OS)

● Simple/common application
● Single task, single threaded
● Using (100%) assembly is still possible
● Using C is sometimes an overkill (still.. it works)

● May implement multi-tasking
● Static scheduling

Pi Operating System

● Targets school children
● Naturally, bare-metal is not an option
● Must be familiar, easy-to-use and feature-rich
● Pre-installed memory card available

● Download options
● NOOBS – New-Out-Of-Box-Software
● Raspbian – Official Linux Distribution for Pi
● Other 3rd-party OS (including Win10 IoT!)

Raspbian OS

● Raspbian – based on Debian
● ‘Official’ Distribution

● Normal user on login with sudo access
● Commands with sudo has root privileges

● Same package management system
● To install package: sudo apt install <pkg>
● To update package list: sudo apt update
● To upgrade software: sudo apt upgrade

OS Installation

● Downloads are disk images
● Write (raw) to SD card (use dd on Linux)

● Can be done ‘manually’
● Boot partition: FAT32 (FAT16 OK?)
● Root partition: Linux EXT filesystem (Any?)

Pi Development

● Bare-metal Codes
● Cross-compiler is a must
● Development on host PC

● Running (Linux) OS
● Native compiler available
● Can be slow for many (better on Pi 3?)
● Cross-compilers can be used

Playtime 1

● What we need
● Raspberry Pi board, HDMI monitor and cable
● USB keyboard & mouse
● MicroSD card with Raspbian pre-installed

● What we do
● Switch on Raspberry Pi and boot Raspbian
● Explore Raspbian Desktop on Pi
● Change hostname to something unique

Playtime 2

● What we need
● Stuffs from Playtime 1
● Breadboard, LED, 1K resistor
● Connection wires (2xM-F, 2xM-M)

● What we do
● Access GPIO from shell (using sys fs)

Playtime 3 (optional)

● What we need
● Stuffs from Playtime 2
● Linux kernel module programming knowledge

● What we do
● Compile/Load/Remove kernel module
● Module to blink LED

Session 1: Introduction

Data Server Systems Overview

Client-Server Model

● All communications
start with client →
server requests

● OSI layers for flow
● Most common server

is the Web Server
(HTTP)

● Servers are the
software – hardware
can be the same!

OSI Layers (Side Track!)

● Physical – bit-level transmission (medium)
● Data Link – framing, MAC address
● Network – physical→logical, IP address
● Transport – flow control, TCP/datagram
● Session – manage connections (socket!)
● Presentation – format conversions
● Application – protocols like HTTP, FTP

Common Electronics Project

Microcontroller Sensor(s)
Display @
Actuator
Circuit(s)

Data Acquisition Control @ Data Display

Data Processing/Logging

Common Electronics Project

Microcontroller Sensor(s)
Display @
Actuator
Circuit(s)

Internet

?
Publish data?
Remote Access?
Centralized Data
Storage/Processing?

●IoT
●Cloud
Computing/
Storage

Data Server for Embedded Systems

● Embedded Server
● The same software that does data acquisition, serves

data
● C programing is more efficient (PHP possible)
● Javascript (NodeJS/NWJS) getting popular

● Pure Data Server
● Software only handles data transactions (no hardware

interfacing)
● PHP is great here
● Javascript (NodeJS) also capable

Playtime 4

● What we need
● Stuffs from Playtime 2
● But, a switch instead of LED (or temp sensor?)
● Codes from my1codelib

● What we do
● See how socket works... can be web server!
● Get data and serve!

● Note:
● Servers need fixed IP (or hostname)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

