
1NMK322 – Microcontroller

NMK322 - Microcontroller

Lecture 06 – 8051 Serial Interface

2NMK322 – Microcontroller

Serial Communications

• Parallel vs serial
– Why serial​?

• Communication modes
– Signal ‘directions’

• Synchronous/Asynchronous
– Timing options

• Transfer rate / signaling protocol
– Switching speed
– Framing & electrical specifications

• For NMK322, 2 words: UART & RS232

3NMK322 – Microcontroller

Why serial?

• Disadvantage
– less data per clock cycle

• Advantage
– higher clock rate

• less space → better isolation
• less ‘crosstalk’ issue ← less capacitive effect?

– lower cost
• less wires
• less pins/ports

• Your pick?

4NMK322 – Microcontroller

Communication Mode

• Simplex
– single transmission line , single direction
– device transmit OR receive ONLY

• Half Duplex
– single transmission line , both directions
– taking turns transmitting and receiving

• Full Duplex
– dual transmission line , both directions
– device can transmit AND receive simultaneously

5NMK322 – Microcontroller

{S,As}ynchronous Transfer

• Synchronous
– clock signal is part of the interface
– single time reference for both devices
– usually higher transmission rate

• Asynchronous
– clock signal NOT in the interface
– both devices need ‘agree’ on a clock rate
– need a method to keep in-phase

6NMK322 – Microcontroller

Asynchronous Serial Communication

• Universal Asynchronous Receiver-Transmitter
(UART)

– generic hardware
design consensus

– parallel ↔ serial logic
conversion

– configurable clock
generator

– dual lines: transmit
(TX) and receive (RX)

7NMK322 – Microcontroller

UART: Data Framing

• 2 issues in asynchronous serial transmission
– keep device clock in-phase
– know when data begins/ends

• needs meta-signal → frame!
– Idle [1] (logic high @mark)
– Start [1] (logic low @space)
– Data [5-9], Parity [0-1]
– Stop [1-2] (logic high)

Idle Start 0 1 2 3 4 5 6 7 <P> Stop <St> Idle

Time

Note: Logic high
can be most +ve

(e.g. 5V) OR most
-ve (e.g. 0V)

Note: mark and space are terms used in telecommunications. Sometimes, still used to explain
serial communication.

8NMK322 – Microcontroller

UART: Signal Protocol and Timing

• RS232 – Recommended Standard 232
– in telecommunications, for serial communications
– defines signals between DCE and DTE
– commonly used protocol in microcontroller

systems

• RS232 specifies (among others):
– electrical signal characteristics (logic level, timing,

etc.)
– mechanical characteristics (connectors, pin id,

etc.)

Note: DCE is Data Communication (@Circuit-terminating) Equipment (like a modem)
and DTE is Data Terminal Equipment (like a computer).

9NMK322 – Microcontroller

RS232 Interface

• Physical Port
– DB9 (most common) or DB25
– no longer a ‘standard’ port on modern PC

• Virtual Port
– USB virtualization → USB-to-serial converters
– Utilizes 0V – 5V range instead

10NMK322 – Microcontroller

RS232 Signals

• Line count:
– defines many signals (using up to 25-pin

connector)
– only 3 core signals: TX (Data Transmit), RX (Data

Receive), GND (Voltage reference)

• Voltage level:
– logic 1 (@mark) at -15V to -3V range
– logic 0 (@space) at 3V to 15V range
– not TTL → require line driver like MAX232

11NMK322 – Microcontroller

8051 Serial Port

• Full-duplex serial port
– RX @P3.0 , TX @P3.1

• Variable baudrate controlled using Timer 1
– using 8-bit auto-reload (mode 2)

• Port settings in SCON register (@0x98)

• Serial data buffer in SBUF register (@0x99)
– 2 physical registers (TX/RX) using same address
– TX buffer will be transmitted when written to
– RX buffer will be written when a byte is fully

received (double buffer)

12NMK322 – Microcontroller

Serial Control Register (SCON)

MSB LSB

SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit Name Description

SCON.7 SM0 Serial Port Mode bit 0

SCON.6 SM1 Serial Port Mode bit 1

SCON.5 SM2 Multiprocessor Communication Enable

SCON.4 REN Receive Enable
Set to enable reception. CLR to disable reception.

SCON.3 TB8 Bit 8 of message to transmit
Used to transmit optional parity bit

SCON.2 RB8 Bit 8 of received message
Receives optional parity bit

SCON.1 TI Transmit Interrupt Flag
Set when Byte in SBUF is completely transmitted.

SCON.0 RI Receive Interrupt Flag
Set when a valid byte is received into SBUF

13NMK322 – Microcontroller

8051 Serial: Mode 1

• 8-bit UART, variable baud rate
– most commonly used (RS232)

• 10-bits transmission for both TX / RX
– Start-bit, Data-bit (x8), Stop-bit

• Transmit (TX)
– starts when SBUF(TX) is written to
– TI flag asserted when Stop-bit is on TX line

• Receive (RX)
– can only happen if REN = 1 (in SCON)
– RI flag asserted when data copied into SBUF

14NMK322 – Microcontroller

Baudrate Calculation

• Timer 1 in Mode 2 (overflow rate)
– TF1 will trigger next bit transfer
– baudrate calculation:

– thus, TH1 reload value

– for 11.0592MHz, TH1 = 256 – (28800/Baud)
• Note: 11.0592MHz/12/32 = 28800 (SMOD=0)

Baud=2
SMOD

32
×

Fosc

12
× 1

(256−TH 1)

TH 1=256−(2
SMOD

32
×

F osc

12
× 1

Baud
)

SMOD is MSB
in PCON

(SFR@0x87)

15NMK322 – Microcontroller

Calc1: 9600 baud

• Assume fosc = 11.0592MHz

TH1 = 256 - (28800/9600)
 = 256 - (288/96)
 = 256 - 3
 = 253

16NMK322 – Microcontroller

8051 Serial: UART RS232

• Configure serial
control for mode 1
– 8-bit, var. baud

• Configure timer 1 as
 baud rate generato
– 8-bit auto-reload

• Set timer reload
value
– e.g. 253 for 9600

• Start timer @ baud
generator

SCON = 0x50;

TMOD &= 0x0F;
TMOD |= 0x20;

TH1 = 253;
TR1 = 1;

17NMK322 – Microcontroller

8051 Serial: Transmit/Receive 1 byte

• Send byte to SBUF
– assume value 0x55

• Wait for transmit to
finish
– check TI flag

• Reset for next
– Clear TI flag

SBUF = 0x55;
while (TI==0);
TI = 0;

• Wait for receive to
complete
– check RI flag

• Read byte from SBUF
– assume var ‘sdat’

• Reset for next
– Clear RI flag

while (RI==0);
sdat = SBUF;
RI = 0;

18NMK322 – Microcontroller

8051 Code: Continuous TX/RX

• Code to
continuously send
ASCII ‘A’ @9600
#include <reg51.h>
void main(void) {
 SCON = 0x50;
 TMOD = 0x21;
 TH1 = 253; TR1 = 1;
 while (1) {
 SBUF = ‘A’; //0x41
 while (TI==0);
 TI = 0;
 }
}

• Code to continuous
read serial and pass
to P1 @9600
#include <reg51.h>
void main(void) {
 SCON = 0x50;
 TMOD = 0x21;
 TH1 = 253; TR1 = 1;
 while (1) {
 while (RI==0);
 P1 = SBUF;
 RI = 0;
 }
}

19NMK322 – Microcontroller

Additional Serial Modes
(not really used in the lab)

20NMK322 – Microcontroller

8051 Serial: Mode 2

• 9-bit UART, fixed baud rate
– allows parity bit inclusion

• 11-bits transmission for both TX / RX
– Start-bit, Data-bit (x8), TB9/RB9, Stop-bit

• Baud rate at 1/32 OR 1/64 system frequency
(fosc)
– Internal phase 2 clock
– SMOD=0, Baud=fosc/64
– SMOD=1, Baud=fosc/32

21NMK322 – Microcontroller

8051 Serial: Mode 3

• 9-bit UART, variable baud rate
– combination of modes 1 & 2

• 11-bits transmission for both TX / RX
– Start-bit, Data-bit (x8), TB9/RB9, Stop-bit

22NMK322 – Microcontroller

8051 Serial: Mode 0

• Half-duplex synchronous transfer
– RX as data , TX as clock

• 8-bit without frame
– LSB first

• Data rate at 1/12 system frequency (fosc)
– fixed rate, machine cycle frequency

• Transfer
– single negative pulse (shift clock) per bit
– TI/RI set after 8th shift clock

23NMK322 – Microcontroller

End of Lecture06

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

