PGT104 - Digital Electronics

Part 2 - Logic Gates

Disclaimer:
-Most of the contents (if not all) are extracted from resources available for Digital Fundamentals $10^{\text {th }}$ Edition

The Inverter

The inverter performs the Boolean NOT operation. When the input is LOW, the output is HIGH; when the input is HIGH, the output is LOW.

Input	Output
A	X
LOW (0)	HIGH (1)
HIGH (1)	LOW(0)

The NOT operation (complement) is shown with an overbar. Thus, the Boolean expression for an inverter is $X=\bar{A}$.

The Inverter
 $A \quad X$

Example waveforms:

A group of inverters can be used to form the 1's complement of a binary number:

1's complement

The AND Gate

The AND gate produces a HIGH output when all inputs are HIGH; otherwise, the output is LOW. For a 2-input gate, the truth table is

Inputs		Output
A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

The AND operation is usually shown with a dot between the variables but it may be implied (no dot). Thus, the AND operation is written as $X=A \cdot B$ or $X=A B$.

Example waveforms:

The AND operation is used in computer programming as a selective mask. If you want to retain certain bits of a binary number but reset the other bits to 0 , you could set a mask with 1's in the position of the retained bits.

Example
If the binary number 10100011 is ANDed with the mask 00001111, what is the result? 00000011

Checkpoint

- Imagine a 4-bit counter (output $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$) with any 2-bit output fed into a 2-input AND gate:
- draw timing diagram for the circuit if bits C_{3} and C_{1} are used as inputs, and the counter is counting up
- what about other pairs?

The OR Gate

The OR gate produces a HIGH output if any input is HIGH; if all inputs are LOW, the output is LOW. For a 2-input gate, the truth table is

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

The OR operation is shown with a plus sign (+) between the variables. Thus, the OR operation is written as $X=A+B$.

The OR Gate

Example waveforms:

The OR operation can be used in computer programming to set certain bits of a binary number to 1 .

ASCII letters have a 1 in the bit 5 position for lower case letters and a 0 in this position for capitals. (Bit positions are numbered

Example

 from right to left starting with 0 .) What will be the result if you OR an ASCII letter with the 8 -bit mask 00100000 ?The resulting letter will be lower case.

Checkpoint

- Imagine a 4-bit counter (output $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$) with any 2-bit output fed into a 2-input OR gate:
- draw timing diagram for the circuit if bits C_{2} and C_{1} are used as inputs, and the counter is counting down
- what about other pairs?

The NAND Gate

The NAND gate produces a LOW output when all inputs are HIGH; otherwise, the output is HIGH. For a 2-input gate, the truth table is

Inputs		Output
A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

The NAND operation is shown with a dot between the variables and an overbar covering them. Thus, the NAND operation is written as $X=\overline{A \cdot B}$ (Alternatively, $X=\overline{A B}$.)

The NAND Gate $A-\quad X$ $A-\& \quad X$ B

Example waveforms:

The NAND gate is particularly useful because it is a "universal" gate - all other basic gates can be constructed from NAND gates.

How would you connect a 2-input NAND gate
Trivia to form a basic inverter?

The NOR gate produces a LOW output if any input is HIGH; if all inputs are HIGH, the output is LOW. For a 2-input gate, the truth table is

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

The NOR operation is shown with a plus sign (+) between the variables and an overbar covering them. Thus, the NOR operation is written as $X=\overline{A+B}$.

$\begin{array}{ll}\text { The NOR Gate } & A \\ B\end{array} \quad \begin{array}{lll}X & A & \geq 1 \\ B & \end{array}$

Example waveforms:

The NOR operation will produce a LOW if any input is HIGH.
When is the LED is ON for the circuit shown?

The LED will be on when any of the four inputs are HIGH.

The XOR Gate

 $\begin{array}{ll}A-=1 & X \\ B & \end{array}$

The XOR gate produces a HIGH output only when both inputs are at opposite logic levels. The truth table is

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

The XOR operation is written as $X=\bar{A} B+A \bar{B}$.
Alternatively, it can be written with a circled plus sign between the variables as $X=A \oplus B$.

Example waveforms:

Notice that the XOR gate will produce a HIGH only when exactly one input is HIGH.

If the A and B waveforms are both inverted for the above waveforms, how is the output affected?

There is no change in the output.

The XNOR gate produces a HIGH output only when both inputs are at the same logic level. The truth table is

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

The XNOR operation shown as $X=A B+A B$. Alternatively, the XNOR operation can be shown with a circled dot between the variables. Thus, it can be shown as $X=A \odot B$.

The XNOR Gate $\left.\begin{array}{l}A \\ B\end{array}\right) \quad \begin{array}{lllll}X & A & =1 & X \\ B & \end{array}$

Example waveforms:

Notice that the XNOR gate will produce a HIGH when both inputs are the same. This makes it useful for comparison functions.

If the A waveform is inverted but B remains the same, how is the output affected?

The output will be inverted.

Fixed Function Logic

Two major fixed function logic families are TTL and CMOS. A third technology is BiCMOS, which combines the first two. Packaging for fixed function logic is shown.

Pin no. 1 identifiers

Lead no. 1 identifier

DIP package SOIC package

Fixed Function Logic

Some common gate configurations are shown.

Fixed Function Logic

Logic symbols show the gates and associated pin numbers.

Fixed Function Logic

Data sheets include limits and conditions set by the manufacturer as well as DC and AC characteristics. For example, some maximum ratings for a 74HC00A are:

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0 V	V
$\mathrm{~V}_{\text {in }}$	DC InputVoltage (Referenced to GND)	-0.5 to $\mathrm{Vc⿻}^{+0.5 \mathrm{~V}}$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to Vcc +0.5 V	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per pin	± 25	mA
I_{CC}	DC Supply Current, Vc and GND pins	± 50	mA
FD	Power Dissipation in Still Air, Plastic or Ceramic DIP \dagger	750	mW
	SOIC Package \dagger TSSOP Package \dagger	500	450

Quiz

The truth table for a 2-input AND gate is

Inputs	Output		Inputs	Output
A B	X		A B	X
	0	b.		1
01	1		01	0
10	1		10	0
	0		11	0
Inputs	Output		Inputs	Output
	X		A B	X
00	0			0
	0	d.	01	1
10	0		10	1
	1			1

Quiz

The truth table for a 2-input NOR gate is

a. | Inputs | | Output |
| :---: | :---: | :---: |
| A | B | X |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

b.

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

Inputs		Output
A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

Quiz

The truth table for a 2-input XOR gate is

	Inputs	Output		Inputs	Output
	A B	X			X
a.	$0 \quad 0$	0	b.		1
	01	1		01	0
	10	1		10	0
	11	0		11	0
	Inputs	Output		Inputs	Output
		X		$A \quad B$	X
		0			0
c.	01	0	d.	01	1
	10	0		10	1
		1			1

Quiz

The symbol \(\begin{aligned} \& A
\& B\end{aligned} \quad \geq 1 \quad X\) is for a(n)
a. OR gate
b. AND gate
c. NOR gate
d. XOR gate

Quiz

The symbol $\begin{gathered}A \\ B\end{gathered} \square{ }^{X}$ is for a(n)
a. OR gate
b. AND gate
c. XNOR gate
d. XOR gate

Quiz

A logic gate that produces a HIGH output only when all of its inputs are HIGH is a(n)
a. OR gate
b. AND gate
c. NOR gate
d. NAND gate

Quiz

The expression $X=A \oplus B$ means
a. A OR B
b. A AND B
c. A XOR B
d. A XNOR B

Quiz

A 2-input gate produces the output shown. (X represents the output.) This is a(n)
a. OR gate
b. AND gate
c. NOR gate
d. NAND gate

Quiz

A 2-input gate produces a HIGH output only when the inputs agree. This type of gate is $\mathrm{a}(\mathrm{n})$
a. OR gate
b. AND gate
c. NOR gate
d. XNOR gate

