PGT104 - Assignment 1

Name:
Student ID: \qquad
Answer all questions.
(1) Perform each given binary arithmetic operation in 2's complement form:
(a) $11011001+11100110$
(b) $00110011-00011001$
(c) 01100100 X 11111011
(d) $10001000 \div 00100010$

All procedures used to obtain the answer must be clearly shown. Answer for (c) should be in 16-bit. Answer for (d) should be ONE signed 8-bit quotient and ONE unsigned 8-bit remainder.
(2) Perform the following 8-bit BCD arithmetic (provide the answer in both decimal and BCD):
(a) $00011000+00010010$
(b) $01100100+00110011$
(c) $01001000+01000111$
(d) 10000101-00010101

All procedures used to obtain the answer must be clearly shown.
(3) Determine the output for the gate shown and draw the timing diagram showing output X .

(4) Determine the output for the gate shown and draw the timing diagram showing output X .

(5) Construct a truth table for the following Boolean expressions:
(a) $\bar{X} Y+\bar{Y} Z+\bar{Z} X$
(b) $(\mathrm{P}+\mathrm{Q})(\mathrm{Q}+\mathrm{R})(\mathrm{R}+\overline{\mathrm{P}})$

All procedures used to obtain the answer must be clearly shown.
(6) Use Karnaugh Map to find the minimum SOP form for the following expression:

$$
\overline{\mathrm{Q}} \overline{\mathrm{P}} \overline{\mathrm{R}}+\mathrm{P} \overline{\mathrm{Q}} \mathrm{R}+\overline{\mathrm{P}} \mathrm{R} \overline{\mathrm{Q}}+\mathrm{PQ} \overline{\mathrm{R}}
$$

All procedures used to obtain the answer must be clearly shown.
(7) Explain what a parity bit is. Discuss its use in digital applications.

Your answer (not more than 1 page):

- should explain a parity bit in detail (type, how it is generated or use, etc.)
- should provide example in discussing its usage
- will be given a zero if there is a duplicate answer

