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Chapter 1
Introduction
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What Is An Operating System (1)

A modern computer consists of:

*  One or more processors

*  Main memory

* Disks

*  Printers

* Various input/output devices

Managing all these components requires a layer of
software — the operating system
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What Is An Operating System (2)
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Figure 1-1. Where the operating system fits in.
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The Operating System as an Extended

Machine

Application programs

- Beautiful interface

-— Ugly interface

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.
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The Operating System as a Resource
Manager

*  Allow multiple programs to run at the same time

*  Manage and protect memory, I/O devices, and
other resources

* Includes multiplexing (sharing) resources in two
different ways:

* Intime
* In space
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History of Operating Systems

Generations:

*  (1945-55) Vacuum Tubes

*  (1955-65) Transistors and Batch Systems
*  (1965-1980) ICs and Multiprogramming

*  (1980-Present) Personal Computers
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Transistors and Batch Systems (1)
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Figure 1-3. An early batch system.
(a) Programmers bring cards to 1401.
(0)1401 reads batch of jobs onto tape.
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Transistors and Batch Systems (2)
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Figure 1-3. (c) Operator carries input tape to 7094.
(d) 7094 does computing. (e) Operator carries output tape to
1401. (f) 1401 prints output.
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Transistors and Batch Systems (4)
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Figure 1-4. Structure of a typical FMS job.
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|ICs and Multiprogramming
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Figure 1-5. A multiprogramming system
with three jobs in memory.
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Computer Hardware Review
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Figure 1-6. Some of the components
of a simple personal computer.
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CPU Pipelining
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Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.
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Multithreaded and Multicore Chips

L1
cache
Core1| | Core2 Core 1| | Core 2
L2 L2
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Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A guad-core chip with separate L2 caches.
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Typical access time

Memory (1)

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.
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Memory (2)

Questions when dealing with cache:

* When to put a new item into the cache.
* Which cache line to put the new item In.

* \Which item to remove from the cache when a
slot iIs needed.

* Where to put a newly evicted item in the larger
memory.
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Figure 1-10. Structure of a disk drive.
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/O Devices
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Figure 1-11. (a) The steps in starting an 1/O device and
getting an interrupt.
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Buses
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Figure 1-12. The structure of a large Pentium system
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The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Handheld operating systems
Embedded operating systems

Sensor node operating systems
Real-time operating systems

Smart card operating systems
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Operating System Concepts

Processes

Address spaces

~lles

nput/Output

Protection

The shell

Ontogeny recapitulates phylogeny

* Large memories

* Protection hardware
* Disks

* Virtual memory
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Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.
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Files (1)
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Figure 1-14. Afile system for a university department.
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(@) ()

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.
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Files (3)

Process Process

(==

Figure 1-16. Two processes connected by a pipe.
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System Calls

Address
OXFFFFFFFF _
Return to caller ] .
Trap to the kernel LIy
2 1o procedure
5| Put code for read in register read
10
4
User space e
P < Increment SP 11
~ Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
Kernel space ; i 8 | Sys call
(Operating system) LIERaIch - “| handler

or

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).
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System Calls for Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Figure 1-18. Some of the major POSIX system calls.
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System Calls for File Management (1)

File management

Call Description
fd = open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

Figure 1-18. Some of the major POSIX system calls.
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System Calls for File Management (2)

Call Description
s = mkdir(name, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(hame1, name2) Create a new entry, name2, pointing to namef
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Figure 1-18. Some of the major POSIX system calls.
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Miscellaneous System Calls

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls.
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A Simple Shell

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt( ); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() '=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */
}
}

Figure 1-19. A stripped-down shell.
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Memory Layout

Address (hex)
FFFF

Stack

Y

Data I

Text

0000

Figure 1-20. Processes have three segments:
text, data, and stack.
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Linking

/usr/ast fusr/jim /usr/ast fusr/jim
16 | mail 31 | bin 16 | mail 31| bin
81 | games 70 | memo 81 | games 70 | memo
40 | test 59| f.c. 40 | test 59 | f.c.

38 | prog1 70| note 38 | prog1
() (b)

Figure 1-21. (a) Two directories before linking /usr/jim/memo to
ast’s directory. (b) The same directories after linking.
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Mounting

bin dev lib mnt  usr ba%
(b)

(a)

Figure 1-22. (a) File system before the mount.
(b) File system after the mount.
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Windows Win32 API

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close afile

read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory

rmndir RemoveDirectory Remove an empty directory
link {none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond
to the UNIX calls of Fig. 1-18.
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Operating Systems Structure

Monolithic systems — basic structure:

Tane

A main program that invokes the requested
service procedure.

A set of service procedures that carry out the
system calls.

A set of utility procedures that help the service
procedures.
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Monolithic Systems

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */
int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter_region(int process); /* process is 0 or 1 */
{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;
}
void leave_region(int process) /* process: who is leaving */
{
interested[process] = FALSE; /* indicate departure from critical region */
}

Figure 1-24. A simple structuring model for a monolithic system.
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Layered Systems

Layer Function
5 The operator
4 User programs
3 Input/output management
2 Operator-process communication
1 Memory and drum management
0 Processor allocation and multiprogramming

Figure 1-25. Structure of the THE operating system.
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Microkernels
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@ / User progs.

User
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processes, scheduling, IPC .

Figure 1-26. Structure of the MINIX 3 system.
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Client-Server Model

Machine 1 Machine 2 Machine 3 Machine 4
Client ? A File server Process server Terminal server
LI Kernel Kernel Kernel Kernel
\ Network

Message from
client to server

Figure 1-27. The client-server model over a network.
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Virtual Machines (1)

Virtual 370s

System calls here

I/O instructions here

Trap here - VM/370

Trap here

370 Bare hardware

Figure 1-28. The structure of VM/370 with CMS.
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Virtual Machines (2)

Guest OS process

Excel Word Mplayer Apollon Host OS
O O process

Guest OS
Type 2 hypervisor O
Type 1 hypervisor Host operating system

(a) (b)

Figure 1-29. (a) Atype 1 hypervisor. (b) Atype 2 hypervisor.
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The World According to C

* The C language

* Header files

* Large programming projects
* The model of run time
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The Model of Run Time

@ mac.h @ help.c @

@
preprocesor

Y

C
compiler

main.o @ other.o
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Figure 1-30. The process of compiling C and header files to
make an executable.
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