MODERN OPERATING SYSTEMS
Third Edition
ANDREW S. TANENBAUM

Chapter 1
Introduction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System (1)

A modern computer consists of:

* One or more processors

* Main memory

* Disks

* Printers

* Various input/output devices

Managing all these components requires a layer of
software — the operating system

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System (2)

E-mail Music
Web reader player

browser

User interface program

User mode <

> Software

S~
Kernel mode { Qperating system

Figure 1-1. Where the operating system fits in.

J \.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System as an Extended

Machine

Application programs

- Beautiful interface

-— Ugly interface

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System as a Resource
Manager

* Allow multiple programs to run at the same time

* Manage and protect memory, I/O devices, and
other resources

* Includes multiplexing (sharing) resources in two
different ways:

* Intime
* In space

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

History of Operating Systems

Generations:

* (1945-55) Vacuum Tubes

* (1955-65) Transistors and Batch Systems
* (1965-1980) ICs and Multiprogramming

* (1980-Present) Personal Computers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (1)

Tape System
drive tape Output
Card —

tape
K ol o N 74
QT

1401

1401

(a) (b) (c) (d) (€) (f)

Figure 1-3. An early batch system.
(a) Programmers bring cards to 1401.
(0)1401 reads batch of jobs onto tape.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (2)

TR

[|

1401

1401

(a) (b) (c) (d) (€) (f)

Figure 1-3. (c) Operator carries input tape to 7094.
(d) 7094 does computing. (e) Operator carries output tape to
1401. (f) 1401 prints output.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (4)

/$END
pd

_A~———Data for program
/

P Fortran program //

B
/ssFOHTHAN
_/$JOB, 10,6610802, MARVIN TANENBAUM p

Figure 1-4. Structure of a typical FMS job.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

|ICs and Multiprogramming

Job 3

Job 2

Job 1

Operating
system

Memory
partitions

Figure 1-5. A multiprogramming system
with three jobs in memory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Computer Hardware Review

Monitor
Hard
‘ Keyboard USB printer disk drive
= 0oooo
’ Hard
Video Keyboard USB :
CPU Memory disk
VIV controller controller controller controller
Bus

Figure 1-6. Some of the components
of a simple personal computer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

CPU Pipelining

Execute
unit
Fetch Decode
unit — unit
Holding Execute
Fetch Decode Execute ;
unit
unit = unit I unit r
Fetch Decode
unit - unit
Execute
unit
(a) (b)

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multithreaded and Multicore Chips

L1
cache
Core1| | Core2 Core 1| | Core 2
L2 L2
Z
Core 3 Core 4
L2 L2
(a) (b)

Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A guad-core chip with separate L2 caches.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Typical access time

Memory (1)

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory (2)

Questions when dealing with cache:

* When to put a new item into the cache.
* Which cache line to put the new item In.

* \Which item to remove from the cache when a
slot iIs needed.

* Where to put a newly evicted item in the larger
memory.

Surface 7

Surface 6
Surface 5

Surface 4
Surface 3

Surface 2
Surface 1

Surface 0

Disks

J

——

> D

@

T
e 3

(

Read/write head (1 per surface)

I A

(

(
MMM

oS

—
S

Direction of arm motion

Figure 1-10. Structure of a disk drive.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/O Devices

Disk drive
¢ Current instruction

I Next instruction

& 3| Interrupt Disk
- | controller controller 3. Return
1. Interrupt

9 I
1 . \ /
2. Dispatch f
to handler \T

Interrupt handier

f= Il

Figure 1-11. (a) The steps in starting an 1/O device and
getting an interrupt.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Buses

Cache bus Local bus Memory bus
Level 2 PCI l Main
cache CPU bridge < > memory
ZAN PCI bus
<] 1 =
JL 4
scs| USB USB Graphics
bus ISA <::> IDE adaptor Available
; { bridge disk PCl slot
& < s Mon_
T - IDE bus t'tof
Mouse j
SCSI bus board ISA bus
¢ e 111 >
| | | Srh
Modem Sound Printer Available
card ISA slot

Figure 1-12. The structure of a large Pentium system

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Handheld operating systems
Embedded operating systems

Sensor node operating systems
Real-time operating systems

Smart card operating systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Operating System Concepts

Processes

Address spaces

~lles

nput/Output

Protection

The shell

Ontogeny recapitulates phylogeny

* Large memories

* Protection hardware
* Disks

* Virtual memory

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (1)

Root directory

& ~
Students Faculty
o /
y)
Robbert Matty | Leo Prof.Brown Prof.Green Prof. White
i
I W Vi v
! r J/
/ /
/ 7\ y 2
’ Y Y \ Y
Courses Papers Grants Committees
i J] \
y] / \
\ 1. i \
\ [1\ I 1\
/
Y Y
@) @)
CS101 CS105 . v Z SOSP COST-11
Files

Figure 1-14. Afile system for a university department.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

(@) ()

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (3)

Process Process

(==

Figure 1-16. Two processes connected by a pipe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls

Address
OXFFFFFFFF _
Return to caller] .
Trap to the kernel LIy
2 1o procedure
5| Put code for read in register read
10
4
User space e
P < Increment SP 11
~ Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
Kernel space ; i 8 | Sys call
(Operating system) LIERaIch - “| handler

or

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (1)

File management

Call Description
fd = open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (2)

Call Description
s = mkdir(name, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(hame1, name2) Create a new entry, name2, pointing to namef
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Miscellaneous System Calls

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

A Simple Shell

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() '=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */
}
}

Figure 1-19. A stripped-down shell.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Layout

Address (hex)
FFFF

Stack

Y

Data I

Text

0000

Figure 1-20. Processes have three segments:
text, data, and stack.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Linking

/usr/ast fusr/jim /usr/ast fusr/jim
16 | mail 31 | bin 16 | mail 31| bin
81 | games 70 | memo 81 | games 70 | memo
40 | test 59| f.c. 40 | test 59 | f.c.

38 | prog1 70| note 38 | prog1
() (b)

Figure 1-21. (a) Two directories before linking /usr/jim/memo to
ast’s directory. (b) The same directories after linking.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mounting

bin dev lib mnt usr ba%
(b)

(a)

Figure 1-22. (a) File system before the mount.
(b) File system after the mount.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Windows Win32 API

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close afile

read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory

rmndir RemoveDirectory Remove an empty directory
link {none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond
to the UNIX calls of Fig. 1-18.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Operating Systems Structure

Monolithic systems — basic structure:

Tane

A main program that invokes the requested
service procedure.

A set of service procedures that carry out the
system calls.

A set of utility procedures that help the service
procedures.

nbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Monolithic Systems

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */
int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter_region(int process); /* process is 0 or 1 */
{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;
}
void leave_region(int process) /* process: who is leaving */
{
interested[process] = FALSE; /* indicate departure from critical region */
}

Figure 1-24. A simple structuring model for a monolithic system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Layered Systems

Layer Function
5 The operator
4 User programs
3 Input/output management
2 Operator-process communication
1 Memory and drum management
0 Processor allocation and multiprogramming

Figure 1-25. Structure of the THE operating system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Microkernels

ﬂPrncess

-
@ / User progs.

User

_ 5

Microkernel handles interrupts, @
processes, scheduling, IPC .

Figure 1-26. Structure of the MINIX 3 system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Client-Server Model

Machine 1 Machine 2 Machine 3 Machine 4
Client ? A File server Process server Terminal server
LI Kernel Kernel Kernel Kernel
\ Network

Message from
client to server

Figure 1-27. The client-server model over a network.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Virtual Machines (1)

Virtual 370s

System calls here

I/O instructions here

Trap here - VM/370

Trap here

370 Bare hardware

Figure 1-28. The structure of VM/370 with CMS.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Virtual Machines (2)

Guest OS process

Excel Word Mplayer Apollon Host OS
O O process

Guest OS
Type 2 hypervisor O
Type 1 hypervisor Host operating system

(a) (b)

Figure 1-29. (a) Atype 1 hypervisor. (b) Atype 2 hypervisor.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The World According to C

* The C language

* Header files

* Large programming projects
* The model of run time

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Model of Run Time

@ mac.h @ help.c @

@
preprocesor

Y

C
compiler

main.o @ other.o

linker
Executable
@ binary program

Figure 1-30. The process of compiling C and header files to
make an executable.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

