MODERN OPERATING SYSTEMS
Third Edition

ANDREW S. TANENBAUM

Chapter 3
Memory Management

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



No Memory Abstraction

OxFFF ... -
Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0

(@)

(b)

()

Figure 3-1. Three simple ways of organizing memory with an

operating system and one user process.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639




Multiple Programs Without Memory
Abstraction

[ o ]sere4

CMP 16412
16408
16404
16400
16396
16392
16388
JMP 28 16384

o Jwes [0 Jeesso [0 ] 1o

ADD 28 CMP 28 ADD 28

MOV 24 24 MOV 24
20 20 20

16 16 16

12 12 12

8 8 8

4 4 4

JMP 24 0 JMP 28 0 JMP 24 0

(a) (b) (c)

Figure 3-2. lllustration of the relocation problem.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Base and Limit Registers
| 16384 |—>

| 0 | 32764

Limit register

CMP 16412
16408
16404
16400
16396
16392
16388
| 16384 |——>{ JMP28 |16384

/4 0 16380

Base register

ADD 28
MOV 24
20
16
12

JMP 24 | ©
(c)

Figure 3-3. Base and limit registers can be used to give each
process a separate address space.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Swapping (1)

Time —>
% 7 0 ) Gz, ez ez,
/ / C C C C C
7
/// B B B B 7/
Z - - A
% D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(@) (b) (c) (d) (e) (f) (9)

Figure 3-4. Memory allocation changes as processes come into
memory and leave it. The shaded regions are unused memory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Swapping (2)

B-Stack
r Room for growth ~ [----- [ A
t \ } Room for growth
B-Data
B > Actually in use
B-Program
7 ’ .
A-Stack
r Room for growth ~ f----- [ S
t \ } Room for growth
A-Data
A > Actually in use
A-Program
Operating Operating
system system
(a) (b)

Figure 3-5. (a) Allocating space for growing data segment. (b)
Allocating space for growing stack, growing data segment.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Memory Management with Bitmaps

77/ T W/ T N /W

11111000 Plof[s| 4[H]|5|3] F[P|s|le| [P |14|a] =
11111111 )
11001111 C

H|18] 2| —4—>| P |20 6| ——=>| P |26| 3| ——>| H|29| 3 | X

11111000 / f \ ‘f

T T Hole Starts Length Process
at 18 2

(b) (c)

Figure 3-6. (a) A part of memory with five processes and three
holes. The tick marks show the memory allocation units. The

shaded regions (0 in the bitmap) are free. (b) The
corresponding bitmap. (c) The same information as a list.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Memory Management with Linked Lists

Before X terminates After X terminates

@| A | x | B becomes A B
b | A | x % becomes NN
© ) x | B becomes /) B
O VA x W70 vecomes 177777777

Figure 3-7. Four neighbor combinations
for the terminating process, X.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Virtual Memory — Paging (1)

The CPU sends virtual

CPU addresses to the MMU
package /
CPU 1>
/ Memory \ Disk
ot management emory controller
unit
'\ l l Bus

X

The MMU sends physical
addresses to the memory

Figure 3-8. The position and function of the MMU — shown as
being a part of the CPU chip (it commonly is nowadays).
Logically it could be a separate chip, was in years gone by.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Paging (2)

Virtual
address
space
60K—-64K X
56K-60K [ X | } Virtual page
52K-56K X
48K-52K X
44K—-48K 7
40K—44K X .
36K-40K | 5 Ej';ﬁf;'
32K-36K X address
28K-32K X 28K-32K
24K-28K X 24K-28K
20K—24K 3 20K-24K
16K—20K 4 - 16K-20K
12K-16K 0 \ 12K-16K
8K-12K 6 8K-12K
4K-8K 1 - 4K—-8K
OK-4K 2 / \ 0K—-4K
Page frame

Figure 3-9. Relation between virtual addresses and
physical memory addresses given by page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Paging (3)

|

[1]1]ofo]ofo]ofo]ofo]ofo]1]o]o]

T

page table

15| 000 0
14| 000 0
13| 000 0
12| 000 0
11 111 1
10| 000 0
9| 101 1
Page 8 000 | O
table 7| oo00 0
6| 000 0
5| 011 1
4| 100 1
3| 000 1
2| 110 |1}~ 110 |
L ! Present/
] mm L A/absent bit

Virtual page = 2 is used
as an index into the

A

12-bit offset
copied directly
from input

to output

A

=

loJof1]ofo]oJofofojoo]ofof1]o]o]

|

Outgoing
physical
address
(24580)

Incoming
virtual
address
(8198)

Figure 3-10. The internal operation of the MMU with

16 4-KB pages.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Structure of Page Table Entry

Caching
disabled Modified Present/absent

[/ /

% | | | Page frame number

N\

Referenced Protection

Figure 3-11. A typical page table entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Speeding Up Paging

Paging implementation issues:

The mapping from virtual address to physical
address must be fast.

If the virtual address space is large, the page table
will be large.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Translation Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

Figure 3-12. ATLB to speed up paging.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639




Multilevel Page Tables

page tables
Y
T | Page
——— | table for
—~1—» [ the top
1, | 4Mof
—1 , | memory
—
>
Top-level
page table
1023 //
6 -
Bits 10 10 12 5 T
: e
3 —
(a) 2 —+—
1 —
i \\ -
1023
6 —
5 —
4 —t
3 1, To
2 —1 , pages
1 T
0 i

Figure 3-13. (a) A 32-bit address with two page table fields.
(b) Two-level page tables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Inverted Page Tables

Traditional page
table with an entry
for each of the 252

pages
52 1 [ |
252 1 i 1
1-GB physical
memory has 218
4-KB page frames Hash table
218 1 | ] 218 4 | —A I o | ]

= . =

— 1 |
Indexed / \

Indexed
by virtual by hash on Virtual Page
page virtual page page frame

Figure 3-14. Comparison of a traditional page table
with an inverted page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Page Replacement Algorithms

Optimal page replacement algorithm
Not recently used page replacement
First-In, First-Out page replacement
Second chance page replacement
Clock page replacement

Least recently used page replacement
Working set page replacement
WSClock page replacement

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Second Chance Algorithm

Page loaded first

\

Most recently
i loaded page

A is treated like a

0 8 12 14 15 18
A D E F G H
3 12 14 15 18 20
B E F G H A

P newly loaded page

Figure 3-15. Operation of second chance.

(a) Pages sorted in FIFO order.

(b) Page list if a page fault occurs at time 20 and A has its R
bit set. The numbers above the pages are their load times.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



The Clock Page Replacement
Algorithm

When a page fault occurs,
the page the hand is
J 5 pointing to is inspected.

The action taken depends
on the R bit:
R = 0: Evict the page
R = 1: Clear R and advance hand

Figure 3-16. The clock page replacement algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



LRU Page Replacement Algorithm

Page Page Page Page Page
o 1 2 3 o 1 2 3 o 1 2 3 1 2 3 1 2 3
ofoj1|1]1 ojoj| 1|1 010]0 0]1]0]|0 O(o0]|O
110[0]0|O 11011 11001 110]0]|0 1101010
2l0]0(0]O0 0Ol0]0|O 1111011 111100 11101
3lojofo]o oOlojo|o 0O(0]|]0|0O 1111110 1111010

(a) (b) () (d) (e)
0O(0]0]|O o111 o(1]111|0 o[1)]0|oO ol1]0]O0
110111 ojoj| 1|1 O(o0]1|0 0olo|jo|o ojojof|o
1{10]10]|1 Oj0]|O|1 0O(0J0|O 111]10]1 11100
110]10]|0 oOlojo|o 1|1]11]0 111]10]0 1(1]11]0

(f) (9) (h) (i) (1)

Figure 3-17. LRU using a matrix when pages are referenced in the
order0,1,2,3,2,1,0, 3, 2, 3.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Page

Figure 3-18. The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks. The five clock ticks
are represented by (a) to (e).

Simulating LRU In Software

R bits for R bits for R bits for R bits for R bits for
pages 0-5, pages 0-5, pages 0-5, pages 0-5, pages 0-5,
clock tick O clock tick 1 clock tick 2 clock tick 3 clock tick 4
0|1]0]1 110]0]|1 1101110 0|0]|0]1 111]0]|0

| I | |
I I | |
| | | |
| | | |
| I | |
| | | |
| | | |
| | | |
1 I | |
| | | |
| | | |
I I | |
| I | |
I I | |
| | | |
| I | |
I | l I

10000000 | 11000000 ! 11100000 | 11110000 | 01111000
| | | |
| | | |

00000000 i 10000000 i 11000000 i 01100000 i 10110000
I I | |
| | | |

10000000 i 01000000 i 00100000 i 00100000 i 10010000
| | | |
1 | | |

00000000 i 00000000 i 10000000 i 01000000 i 00100000
1 I | |
| I | |

10000000 : 11000000 : 01100000 ! 10110000 | 01011000
| | | |
| I | |
| | | |

10000000 ! 01000000 ! 10100000 ! 01010000 ! 00101000
| I | |

(a) (b) (c) (d) (e)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639




Working Set Page Replacement (1)

w(k.1)

1-

Figure 3-19. The working set is the set of pages used by the k
most recent memory references. The function w(k, t) is the
size of the working set at time t.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Working Set Page Replacement (2)

2204 | Current virtual time

Information about {
one page

Time of last use —

Page referenced

during this tick

Page not referenced

during this tick

2084
2003 |1
—— 1980 | 1
1213 |0
—d

2014 |1
2020 |1
2032 1
—\

1620 [0

Page table

R (Referenced) bit
| =+

Scan all pages examining R bit:
if(R==1)
set time of last use to current virtual time

if (R ==0 and age > 1)
remove this page

if (R == 0 and age < 1)
remember the smallest time

Figure 3-20. The working set algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



The WSClock Page Replacement Algorithm (1)

When the hand comes all the way around to its
starting point there are two cases to consider:

. At least one write has been scheduled.
. No writes have been scheduled.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



The WSClock Page Replacement Algorithm (2)

2084 2084]1]
| ] [ ] ]
\

[ ] [ 1] ] [ ]

1980 2014]1] 1980 [2014]0]

] \ ]
1213]0] R bit 1213]0]
Time of
last use
(@) (b)
|1620 0 1620]0
[ ] | [ ] ]
2003 2003 /
] [ 1] ] [ ]
[2074]0] 3014]0]
[ ] ﬁ
[1213]0] 2204
New page

Figure 3-21. Operation of the WSClock algorithm. (a) and (b) give
an example of what happens when R = 1.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



The WSClock Page Replacement Algorithm (3)

1620i0| 1620i0

I ] I ]
2003 \

[ ] ] [ ] [ ]

Figure 3-21. Operation of the WSClock algorithm.
(c) and (d) give an example of R = 0.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Summary of Page Replacement Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly
NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

Figure 3-22. Page replacement algorithms discussed in the text.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Local versus Global Allocation Policies (1)

Age
A0 10 AO A0
A1 7 A1 A1
A2 5 A2 A2
A3 4 A3 A3
A4 6 A4 A4
A5 3 A A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3 A
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
Ci 3 Ci Ci
C2 5 C2 C2
C3 6 C3 C3

(@) (b) ()

(é) Original configuration.-(b) Loéafpagé replacement.
(c) Global page replacement.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Local versus Global Allocation Policies (2)

Page faults/sec

Number of page frames assigned

Figure 3-24. Page fault rate as a function
of the number of page frames assigned.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Separate Instruction and Data Spaces

032

Data <

Program -<

Single address

space

Figure 3-25. (a) One address space.

232

Program {
0

| space

D space

(b) Separate | and D spaces.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

} Unused page

> Data




Shared Pages

[ 111}

Process
table

Program Data 1 Data 2
L J
VT
Page tables

Figure 3-26. Two processes sharing the same program
sharing its page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Shared Libraries

36K

12K

Process 1 RAM Process 2

Figure 3-27. A shared library being used by two processes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Page Fault Handling (1)

The hardware traps to the kernel, saving the
program counter on the stack.

An assembly code routine is started to save the
general registers and other volatile information.

The operating system discovers that a page
fault has occurred, and tries to discover which
virtual page iIs needed.

Once the virtual address that caused the fault is
known, the system checks to see if this address
IS valid and the protection consistent with the
access



Page Fault Handling (2)

If the page frame selected is dirty, the page Is
scheduled for transfer to the disk, and a context

switch takes place.
When page frame is clean, operating system

looks up the disk address where the needed
page Is, schedules a disk operation to bring it in.

When disk interrupt indicates page has arrived,
page tables updated to reflect position, frame
marked as being in normal state.



Page Fault Handling (3)

Faulting instruction backed up to state it had
when it began and program counter reset to
point to that instruction.

Faulting process scheduled, operating system
returns to the (assembly language) routine that
called it.

This routine reloads registers and other state
Information and returns to user space to
continue execution, as if no fault had occurred.



Instruction Backup

MOVE.L #6(A1), 2(A0)

f-(—1 6 Bits —)-1
1000 | Opcode

02| 6 |} Firstoperand
04 2 |} Secondoperand

Figure 3-28. An instruction causing a page fault.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Main memory

Pages

a)

Backing Store (1)

Disk

Swap area
7

5

2
7

Main memory

Disk

Pages
0 3
4 6
Page
table
51
Disk

O

Swap area

N

Figure 3-29. (a) Paging to a static swap area.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Backing Store (2)

Main memory Disk
N
Pages N~
0 3 Swap area
4 6
>
Page g
table /1
6
Disk /
4

i __mapé
ol

(b)

Figure 3-29. (b) Backing up pages dynamically.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Separation of Policy and Mechanism (1)

Memory management system is divided into
three parts:

* Alow-level MMU handler.
*  Apage fault handler that is part of the kernel.
* An external pager running in user space.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Separation of Policy and Mechanism (2)

3. Request page

/\ Disk

Main memory

User User
External
space |
2. Needed
page
e
6.hhn:‘|l%§i%"'
page in

Figure 3-30. Page fault handling with an external pager.

4.Page

>
arrives ©

ar

1. Page
fault

Kernel )
space

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation (1)

A compiler has many tables that are built up as
compilation proceeds, possibly including:

*  The source text being saved for the printed listing (on
batch systems).

*  The symbol table — the names and attributes of variables.

*  The table containing integer, floating-point constants
used.

* The parse tree, the syntactic analysis of the program.
*  The stack used for procedure calls within the compiler.



Segmentation (2)

Virtual address space

Call stack *
} Free
Address space ,
Space currently being
llocated to th
sacl‘):s tereeo © { Parse tree } used by the parse tree

Constant table +

Source text +

bumped into the
source text table

Symbol table has
Symbol table

Figure 3-31. In a one-dimensional address space with growing
tables, one table may bump into another.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



20K

16K

12K

8K

4K

oK

Figure 3-32. A segmented memory allows each table to grow or
shrink independently of the other tables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Symbol
table

Segment
0

12K

8K

4K

0K

Segmentation (3)

Source
text

Segment
1

oK

Constants

Segment
2

16K

12K

8K

4K

oK

— Parse
tree

Segment
3

12K

8K

4K

0K

Call
stack

Segment
4




Implementation of Pure Segmentation

Consideration Paging Segmentation

Need the programmer be aware No Yes
that this technique is being used?

How many linear address 1 Many
spaces are there?

Can the total address space Yes Yes
exceed the size of physical
memory?

Can procedures and data be No Yes
distinguished and separately
protected?

Can tables whose size fluctuates No Yes
be accommodated easily?

Is sharing of procedures No Yes
between users facilitated?

Why was this technique To get a large To allow programs
invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and
protection

Figure 3-33. Comparison of paging and segmentation.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: MULTICS (1)

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

..-"'f//"{!/

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

/K7,

Segment 1
(8K)

Segment 2

Segment 3
(8K)

Segmem 5

/A{f’fff

.
7,

K

Segmem 2

5K)

Segment 6
(4K)

Segment 5
(4K)

Segment 0
(4K)

Segment 7
(SK)

//M,-

Segment 2

Segment 6
(4K)

Segment 0

(@)

Segment 7
(5K)

7397,

(4K)

Segment 0

(b)

(4K)

Segment 7
(5K)

Segment 2
(SK)

Segment 0

(©)

Segment 7
(SK)

(4K)

Segment 0

(d)

(4K)

()

Figure 3-34. (a)-(d) Development of checkerboarding. (e)
Removal of the checkerboarding by compaction.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: MULTICS (2)

31
[

kI
[

1 1 Page 2 entry

T T Page 1 entry
Segment 6 descriptor Page 0 entry
Segment 5 descriptor Page table for segment 3

Segment 4 descriptor

Segment 3 descriptor

]
[ Y
by
L[4

Segment 2 descriptor

Segment 1 descriptor Page 2 entry
Segment 0 descriptor Page 1 entry
Descriptor segment Page 0 entry

Page table for segment 1

(a)
Figure 3-35. The MULTICS virtual memory. (a) The
descriptor segment points to the page tables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: MULTICS (5)

il 4

»~ >~

36 bits

l l Page 2 entry

Page 1 entry

Segment 6 descriptor Page 0 entry

Segment 5 descriptor Page table for segment 3

Segment 4 descriptor

Segment 3 descriptor l l

Segment 2 descriptor T

Segment 1 descriptor Page 2 entry

Segment 0 descriptor Page 1 entry
Descriptor segment Page 0 entry

Page table for segment 1

18 9 111 3 3
Main memory address Segment length
of the page table (in pages)

Page size:

0 = 1024 words

1 =64 words

0 = segment is paged

1 = segment is not paged

Miscellaneous bits

Protection bits

(b)

Figure 3-35. The MULTICS virtual memory. (b) A segment
descriptor. The numbers are the field lengths.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639




Segmentation with Paging: MULTICS (6)

When a memory reference occurs, the following
algorithm is carried out:

*  The segment number used to find segment descriptor.

Check is made to see if the segment’s page table is in
memory.

— If not, segment fault occurs.
— If there Is a protection violation, a fault (trap) occurs.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: MULTICS (7)

* Page table entry for the requested virtual page
examined.

— If the page itself is not iIn memory, a page fault is
triggered.

— If it Is In memory, the main memory address of the
start of the page is extracted from the page table entry

* The offset is added to the page origin to give the
main memory address where the word Is
located.

* The read or store finally takes place.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: MULTICS (8)

Address within
the segment

A

Segment number

18

Page Offset within
number the page
6 10

Figure 3-36. A 34-bit MULTICS virtual address.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639




Segmentation with Paging: MULTICS (9)

MULTICS virtual address

Segment number Page Offset
number
Word
Descriptor Page frame \ ‘
Segment W Page ?ﬁset
number Descriptor number Page Page
segment table

Figure 3-37. Conversion of a two-part MULTICS address into a
main memory address.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: MULTICS (10)

Comparison Is this
field ity
- A N used?
Segment Virtual Page
number page frame Protection Age l
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
T —m

Figure 3-38. A simplified version of the MULTICS TLB. The
existence of two page sizes makes the actual TLB more
complicated.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: The Pentium (1)

Bits 13 1 2

/X

0=GDT/1 =LDT Privilege level (0-3)

Index

Figure 3-39. A Pentium selector.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: The Pentium (2)

0: 16-Bit segment W,_
1: 32-Bit segment |

0: Liis in bytes '
1: Liis in pages |

[ 0: Segment is absent from memory

| 1: Segment is present in memory

Privilege level (0-3)

[ 0: System

| 1: Application

Y

Segment type and protection

L7 ..
Base 24-31 G|D / 1Lé':':'|';3 DPL Type Base 16-23 4
2]
Base 0-15 Limit 0-15 0
- : _ Relative
b 32 Bits " address

Figure 3-40. Pentium code segment descriptor.

Data segments differ slightly.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: The Pentium (3)

Selector Offset
Descriptor
Base address +
Other fields
Y

32-Bit linear address

Figure 3-41. Conversion of a (selector, offset)
pair to a linear address.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: The Pentium (4)

Linear address

Bits 10 10 12
Dir Page Offset
(@)
Page directory Page table Page frame
A
:'_L }_,J: ‘;,J-“, ‘:_,L Word LJ:\' ‘J::
selected ~
L
1024
Entries T
, T Offset
Dir
Page
n 1 l f
/ /
Directory entry Page table
points to entry points
page table to word

(b)
Figure 3-42. Mapping of a linear address onto a physical address.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Segmentation with Paging: The Pentium (5)

er progra
Vs Ms Typical uses of

7 the levels

Level

Figure 3-43. Protection on the Pentium.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

