Computer Architecture

An embedded approach

[Module 2]

Laying the
Foundations

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 1

Contents

21 Computer Organisation
2.2 Computer Fundamentals
2.3 Number Formats
2.4 Arithmetic
2.5 DMultiplication
2.6 Division
2.7 Fractional Number Formats
2.8 Floating Point
2.9 Floating Point Processing
"© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach Page 2

Computer Organisation

What is inside a computer?

Blocks that move and manipulate binary data (traditionally, things
like an arithmetic logic unit — ALU, memory, registers and so on).

What do these things do?

Nothing more than either move or transform binary values. All of
our data (videos, pictures, mp3s etc.) are stored as large amounts
of binary data...

How are these connected?

Memory elements and processing units are connected by buses.
All of these are controlled in some way by a sequence of instructions — a program.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 3

Flynn's Taxonomy

data word
ERRNERRN

data word
1000 e

data word

OO0OOO0n

data word
100 e

data word
OO00R0OE0H, J

Single Instruction stream, Multiple Data (SIMD)

stERSSEh ‘w
“instruction

Multiple Instruction stream, Single Data (MISD)

data word data word

SERER AEAENEE
data word data word

10 I T I I

Multiple Instruction stream, Multiple Data (MIMD)

"© 2011 Dr I. V. McLoughlin

Computer Architecture: an embedded approach

Page 4

Types of architecture

Von Neumann architecture

The same memory holds both data and instructions, both are transferred to the
CPU through the same buses.

Harvard architecture

One memory holds data and another one holds instructions, each are transferred
to the CPU through separate buses.

Other architecture

Many alternatives. For example, several dedicated buses (ADSP2181), shared
address and separate data buses, or separate address buses and shared data
bus.

Cache memory may provide the CPU with an internal Harvard architecture,
but external von Neumann buses (or vice versa)!

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 5

Layers of computation

Layer Computer structure
5 your instructions to computer
4 assembly language program

3

2 CPU instruction set

1 CPU microarchitecture
0 Binary valued logic

Operation

Translation through compilation

Translation through assembly

BIOS calls, OS APIs, SWis

Hardware decode and interpretation

Hardware execution

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 6

A few definitions

Q. What is an ALU?

Arithmetic Logic Unit - can perform simple arithmetic and logic
operations such as add, subtract, NAND, OR, etc...

Input and output are usually from/to registers, connected through a
fast bus. The ALU deals with fixed point numbers only, and
usually operates within a single instruction cycle.

Q. What is an FPU?

Floating Point Unit - either on-chip, or an external co-processor,

it performs complex arithmetic on floating-point numbers (usually in
IEEE 754 format).

FPUs are usually very slow (may take hundreds of instruction cycles
to calculate), and takes its I/O direct from special floating point
registers that the CPU can write to.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 7

A few definitions

Q. What is an MMU?

Memory Management Unit - if you need to use virtual memory

then this unit translates an address that the processor needs to access
into a real address in memory. The processor just sees a large
continuous address space of memory, while the MMU hides the real
memory organisation.

Q. What is MMX/SSE?

Multimedia Extensions/Streaming SIMD Extension - an on-chip
co-processor from Intel (also AMD and others) designed to speed up
some multimedia-based operations by allowing simple calculations to
be done on different items of data (usually integers) in parallel.

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 8

A few definitions

Q. What is a register?

Data/address/control register - on-chip memory locations that are
directly wired to internal CPU buses to allow extremely fast access
(within one instruction cycle). The distinction blurs with on-chip
memory for some CPUs, and with the stack in processors like

the picodavall.

Q. What is a clock/instruction cycle?

Instruction cycle - the time taken to fetch an instruction, decode

it, process it and return the result. This may be one or more periods

of the main clock cycle (derived from an external oscillator).

For RISC processors, instructions typically execute in a fixed number of
clock cycles (often in one cycle).

For CISC processors, some instructions can take a lot longer to process.

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 9

A few definitions

Q. What is a RISC CPU?

Reduced Instruction Set Computer - any CPU is limited by its
slowest component and its size. Based on the premise that 80% of
instructions use only 20% execution time, and the remaining 20%
use up 80% of the chip area, CPUs were reduced to contain the 80%
most useful instructions. Sometimes RISC means <100 instructions.

Q. What is a CISC CPU?

Complex Instruction Set Computer - think of any useful operation
and directly insert this into the CPU hardware. Don't worry how
big, power hungry, or slow this will make the CPU. Early VAXs
had instructions that reportedly took more than 2000 clock cycles
to execute!

Some modern processors emulate a CISC instruction set with a RISC core.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 10

A few definitions

Q. What is big endian?
Big endian - most significant byte first, as used by 68000, SPARC etc..

Q. What is little endian?

Little endian - least significant byte first, as used by Intel 80x86 family.

Some processors (such as the ARM) allow for switchable endiness.

To tell the difference, consider the way a multi-byte word (such as a
32-bit integer) is represented. Little endian would have it start with the
least-significant byte, then the next, then the next and finally the most
significant byte.

Any other ordering apart from this is big endian.

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 11

Binary Formats & Arithmetic

Binary humber formats

Everything stored in a computer is represented as strings of 1's and 0's — binary
numbers. However the way we interpret those bits, and the number of bits used
to store a particular value will vary depending upon what we are trying to store.

A single letter of the English alphabet can be stored as a character: 8-bits, as
an unsigned 2's complement byte.

However_the precise distance from the Earth to the Sun in millimetres is so big it
would need at least 64-bits of storage space. If it is not a precise integer, then we
would need to use a fractional or floating point format to store the number.

The way numbers are stored is important; it determines how much memory you
need, how difficult it is to write your programs, how fast the computer operates,
and how much power it consumes...

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 12

Fixed point numbers

Unsigned binary humbers

Bit weightings reading from the right are 1, 2, 4, 8, 16...
e.g. 00101001 =32 + 8 + 1 = 41d

(we use a 'b' and a 'd' to represent binary and decimal, i.e. 41d)

i A great format for calculating machines (so get used to it!)
7 Doesn't represent any negative value.

Sign-maghnitude

MSB is the sign bit (-ve if MSB=1), other bits as for unsigned binary
e.g. 00101010b = 42d and 10101010b =-42d

Relatively easy for humans to read
i Complicated for machine to do arithmetic

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 13

Fixed point numbers

Excess-n

Any number n is stored as n+2™"

For example, excess-127 can be used for 8-bit numbers,
where a number is stored as itself plus 127.

So numbers from -127 to +128 can be stored.
e.g. 10101110b = 47d and 01010010b = -45d

> We will use this later in IEEE 754 floating point representation
> A little confusing for humans (what you see is not what you get!)

Binary coded decimal

Used in early computers, each digit (0-9) is coded in
binary as a separate nibble.

e.g. 0011 0101b = 35d and 0100 0001b = 81d

> Very easy to read by humans, easy arithmetic

> Wastes space (4 bits can hold 0-16, but each digit is 0-9)

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 14

Fixed point numbers

One's complement (now very rarely used)
MSB is sign bit (-ve if MSB=1)
Other bits hold magnitude (in unsigned format) BUT
If number is -ve, the binary digits are all swapped.
e.g. 00101100b = 44d and 11010011b = -44d

Two's complement
MSB is sign bit (-ve if MSB=1)
For -ve numbers, just take ones compliment and add 1
e.g. 00101101b = 45d and 11010011b = -45d

For addition, use standard unsigned binary arithmetic.

> Very easy to perform arithmetic
> Slightly harder for a human to read

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 15

Q-format fractional numbers

Qy-format fractional numbers are often called “(x.y) format”
(where x+y= total no.of bits in the word)

To represent a fraction in fixed point binary arithmetic, just
move the logical position of the radix point. For example,
here are some of the possible 16-bit Q formant numbers:

Format binary sequence decimal range

Q0 (16.0) 0000000000000000 —-32768 to 32767

Ql (15.1) 0000000000000000 -16384 to 16383.5
Q2 (14.2) 0000000000000000 -8192 to 8191.75

Q7 (9.7) 0000000000000000 —-256 to 255.9921875
Q15(1.15) 0000000000000000 -1 to 0.9999694824..

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 16

Q-format fractional numbers

> Q-format allows fractions to be represented in fixed point,
and standard arithmetical operations to be carried out.

> The numbers have a fixed error (quantization) size which
can be very big as a percentage error when the number

value becomes small.
09 (7.9) 0001 1001 0100 0OO0OO0OO

o',
o

value =8 +4 + 0.5 + 0.125 = 12.625

Q-format is useful in Digital Signal Processing.

But for now, we will concentrate on standard integer two's
complement format (which is the same as QO or 16.0) .

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 17

Addition and subtraction

Assuming two's complement numbers

For each 2 bits to add, generate a sum and a carry
Any carry generated from the most significant bits is discarded

Half Adder - add 2 single bits. Gives result + carry.

Full Adder - add 2 single bits and a carry. Gives result + carry.
X

R ; Z=X®y®C_
C —
Couf- + = Z=XycC, + XycC. + XycC. +xycin
' C =Xy + XC_ + YC
ya out in in

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 18

Addition and subtraction

The full adder can be used as a serial adder to add 2 bits
every clock cycle (and therefore 32 bits in 32 clock cycles),
or as a faster ripple carry (or parallel) adder:

b(2) a(2) b(1) a(l) b(0) a(0)
f f f
C = + |- 4 |e——— +
z(2) z(1) z(0)

Looks OK? But remember the carry out equation?
C_=XY +XC_+YC._

Need to wait once for AND and once for OR to get every C_ ,
and this has to also wait for each C_. So the n bit adder needs
to wait a total of 2n propagation delays until output z(n) appears.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 19

Addition and subtraction

The solution is to use carry look-ahead

This adder is larger and more complex, but is much quicker.

:(1) €(1) S(O) i(O)

carry predictor

The carry bits can be generated with only 2
propagation delays (not 2n)

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 20

Addition and subtraction

To subtract with two's complement, just make one of the inputs
negative (to do this, you need to flip the bits & add 1 to it), and
use a normal adder.

Z‘O..n-ﬂ

Cou Cin single wire
- n-bit adder ‘ ngie W
I -i- f n-bit bus
X[0..n-1] ‘
add/subtract
y[0..n-1]

For this adder, can we use C__ to set an overflow flag?

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 21

Addition and subtraction

More about overflow....
consider some two's complement arithmetic examples:

0010 + 1110 = ? in two's complement
2+ (=2) =7 in decimal

0010 + 1110 = 0000 + carry gnswer is 0 but why a carry?

0111 + 0110 = ?
7 + 6 =2

Lt ORI = Aot but 1101=-3 !! Should be 13
Answer is wrong but there's no carry!

Solution is to compare the sign bit of the operands before the
addition. If the sign bits are opposite, then no overflow can
occur. If they are the same, then the result should have same
sign (and if not, this means an overflow has occurred).

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 22

Multiplication

Many methods to do mxn including:

Add m together n times [use an adder and a counter -

Sum of (shifted) partial products [not quick, but is simple]

Split into adds and left shifts [fast, but different calc. times]

Booth multiplier, and Robertson's method [fast but complex]

Convert to logs and add [needs big lookup table]

Use an alternate number format [an active research area]

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 23

Multiplication

Partial products

Worked example: 9 X 11 (unsigned)

Recipe:
C=0
- I =0..3
A 1001 mU|t|p|ICand (9) OOPiIfA[I]=1
B 1011 multiplier (11) C=C+B<<i
1001 nared
: ngredients:
1001 partlal pI‘Od ucts 1 n-bit input register (A)
0000 1 2n-bit input register (B)
1001 1 shifter
C 1100011 result (99) 1 2n-bit adder
1 2n-bit output register

Duration:

| n_loops of (compare/add)
© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 24

Multiplication

Block diagram of partial product method:

multiplicand A n-bit register

2: trigger if BO=1

, shift and
n-bit adder) add selector
4: shift entire register
3: Q=Q+A :)
carry
/ l (if triggered) one bit to the right /
\
Qn-1 accumulator Q Q0 | Bn-1 multiplier B

:!;est bit
BO

(2n+1)-bit reqgister

final result

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach

Page 25

Multiplication

Booths algorithm

Look at every bit in the multiplier and XX, Rule
compare to its neighbour (in turn).

01§ Add multiplicand (shifted by i)

1 0] Subtract multiplicand (shifted by i)
00 Do nothing

11 Do nothing

For each pair, either add, subtract or
ignore the partial product in this shift
position according to the rule:

Worked example: (unsigned)

A 0000 0000 0001 multiplicand
B 0111 1011 1100 multiplier
00 0000 0000 01 - B2B1=10s0 -A<<2
00 0000 0000 O1 + B6B5=01 so +A <<6
000 0000 0000 1 = B7B6=10so -A <<7
000 0000 0000 1 + B11B10=01 so +A <<11

C 000 0000 0000 0111 1011 1100 result

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 26

Multiplication

Instead of two bits at a time, we can lump into 4 or 8 adjacent
bits (Booth & Robertson's).

These methods can be very fast, but are complex to design. In fact
a 32-bit Booths multiplier would be larger than the silicon of the
entire basic ARM CPU! That is why the original ARM has no
Booths multiplier, and its standard multiply instruction takes

many cycles to complete — calculating a set of partial products.

Many microcontrollers have no multiply instruction, however all DSP
processors do. E.g. the ADSP2191has a 40-bit dedicated MAC
(multiply-accumulate) unit that operates in a single cycle.

In fact the MAC unit in the ADSP2191 also includes a second add/
subtract function (there is another one in the separate ALU, and
even a third one in the address register unit!).

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 27

Division

Many CPUs do not have division instructions... modern x86 CPUs do
but the ARM and PIC don't. The ADSP2181 has a divide instruction
that must be executed 16 times in order to do 16-bit division...

in fact this is how we do n-bit division: as n compare/subtracts:

Worked example: (unsigned)

000100
010111 -+ 101 101 /010111

101
000011
101

Answer is 000100 remainder 11

23+5 = 4 remainder 3 V

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 28

Division

So to do the n-bit division of D = V the algorithm is;

1. set i=n, set R=D

2. compare V<<iwith R, decrementing / until (V<<i) > R

3. then set R=R -(V<<i) and put a 1 in the quotient (answer word
In bit position i) and repeat until /=0.

4. At the end, the quotient holds the answer, with the remainder in R

For n-bit signed integers:

1. first take two's complement of any negative numbers to
make them positive

2. do an n-1 bit division (i.e. ignore the sign bits)

3. if the input signs were different, the answer sign is negative
4. if the input signs were the same, the answer sign is positive

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 29

Division

On entry, M is multiplicand,
[START] Q is multiplier (both are n-bit)
Result will be in register A (2n-bit)

A=0, count=0

A=A+(M<<count)xQ[count] count=count+1

Note the subtraction — the
: MSB of Q is it's sign bit
A=A — (M<<n)xQ[n]
l_ Y N
[END]

' ' A=A+(M<<count)xQ[count] |
There is no actual 1-bit +(M<<)xQ[]

multiplication in the yellow
boxes, only a switch decides
whether to accumulate or not:

A=A+(M<<count)

How many adds, subtracts, dec/increments
for 16 bit addition? Are these constant?

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 30

Q-format arithmetic

Remember the Q-format? The logical position of the radix point
must be taken into account by the programmer (this is not a hardware
issue!ll) for arithmetic operations:

Q-format addition/subtraction:

The Q-format of both numbers must be the same for this to work...

0111 + 0101 = 1100 1.75 + 1.25 = 3.00
Q2(22)+Q2(2.2)=Q2(2.2)

0111 + 0101 = 1100

Q2 (2.2) + Q3 (1.3) = Q72?7? 1.75 + 0.625 = 2.°2?

What Q-format is the result? We
know the answer is 2.375, but how
can binary number 1100 equal this?

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 31

Q-format arithmetic

Q-format multiplication:

The Q-format of both numbers can differ, but must be known:

011l > 0101 = 0010 0014 45 » ¢.625 = 1.09375
Q2 (2.2) X Q3 (1.3) = Q5 (3.5)

What Q-format is the result? If we multiply numbers of format
(n.m) and (p.q) then the resultant format is (n+p.m+q), of course
the multiply result is always twice as long as the operand length.
This is normal for every binary multiplier. Q-format arithmetic
uses exactly the same hardware as normal arithmetic.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 32

Q-format arithmetic

Q-format multiplication (continued):

One standard multiply is Q15 x Q15 or (1.15) x (1.15). Of course
the result is a (2.30) number. If we shift this left by one bit we get
a (1.31) result. Then the top word is (1.15), the same format as the
operands.

The Q15 format has a maximum value of 1.0, and so the multiply
result can never be greater than 1.0 (1 x 1). Using this format can
guarantee no overflow!!

Many CPU instruction sets (such as ADSP2181) have a multiply &
left shift instruction that is designed to make Q15 multiplication
easy. Just take the top word of the multiply result...

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 33

Floating point

Floating point extends the range of numbers that can be stored by
a computer, and the accuracy is independent of the number
magnitude.

Floating point numbers store a sign (o), exponent (E) and mantissa (S)
and are of predetermined number base (B). B is usually set to base-2.

floating point value = (-1)cy x S x BE
(0 E S
Bit: O 1 <—=8--> 9 <—=23-—> 32

E and S are both fixed point 2's complement unsigned numbers

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 34

Floating point

We will now consider IEEE standard 754 floating point
representation. This is used in almost all modern FPUs.

IEEE754 has 1 sign (o), 8 exponent (E) and 23 mantissa bits (S)
for single-precision numbers. Double precision is 1, 11 and 52 bits.

The exponent is stored in excess 127 for single precision (and
excess 1023 for double precision).

The mantissa is slightly unusual; the 23 (52) bits are in Q23 (Q52)
format and it is assumed that 1 must be added to the mantissa, but
the 1 is not stored. In other words, the mantissa is a fractional
value ranging from 1 (mantissa bits 0) to slightly below 2 (all
mantissa bits 1).

As the exponent is a power of 2, the mantissa never needs to be

greater than 2 (you would just add 1 to the exponent instead).
© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 35

Floating point

IEEE standard 754 floating point

There are 5 different number types:

Zero| % 0 0
Infinity | & 111, . .111 0
NaN|*¥ 111...111 non 0
Denormalised | 4 0 I any non-zero seguence
Normalised | H E !'=0 | anything

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 36

Floating point

IEEE standard 754 floating point

Most numbers fall in the normalised range. Here are some examples:

1 011 1111 1QQ0 0000 0000 0000 0000 0O0OQ
sign (1 bit)] exponent (8 bits)jmantissa (23 bits)l/

This 1s positive, has exponent of 127-127=0 (remember it's in

excess-127 format), and mantissa of 1 so 1><20 (S><2E) = 1.0

-40 1100 0010 0010 0000 0O0OOO 0OOOO 0OOO o0O0QOO

This 1s negative, has exponent of 132-127=5, and mantissa of 1.25
s0 -1X1.25%2° (X SX2") = -40.0

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 37

Floating point

IEEE standard 754 floating point

Denormalised humbers are smaller than normalised numbers. They
do not have the same implicit "1." in the mantissa - it is instead just
a straightforward binary fraction with maximum size just below 1.
This fraction must be assumed to be multiplied by the smallest
normalized number:

(which is exponent 1, mantissa 1 = 1.0x2
Here is an example denormalised number:

0Q00 0000 01 0000 0000 OOOO 0OOOO 00O
sign (1 bit) | Exponent (8 bits) | mantissa (23 bits)

.. -12 -3
This is +1x2 0% (0.5+0.125) = 7x10 >

126).

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 38

Floating point

To summarise, IEEE 754 single precision numbers are 32 bits long,
double precision are 64 bits long.

Special bit-patterns represent 0, NaN and infinity (and allow for very
small numbers to be stored in denormalised mode).

Finally, special extended intermediate formats allow overflow to
occur during a calculation, as long as the result does not overflow,
this improves the accumulation of round-off errors through a
calculation.

Extended single precision is 43 bits for single precision (1+11+31)
and 64 bits for extended double precision (1+15+63)

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 39

Floating point arithmetic

Addition and subtraction of general floating point

First shift numbers so their exponents are the same, then add mantissas:

To do this addition: 0.824 x%102
+ 0.992 x10°

Y

Do we shift up.™ 0.00824 x10°

+ 0.992 x10°
__/,
or down? 0.824 x10°

+ 99.2 x10°

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 40

Floating point arithmetic

Addition and subtraction:

1. Equalise exponents
2. Add/subtract mantissas
3. Normalise the result

Remember that the mantissa has a hidden bit

Must check for zeros in input or shifted values, or after adding the
mantissas - because zero has a unique IEEE754 bitpattern.

If the added mantissas overflow, then normalise, shift and
increment/decrement the exponent (for add/subtract)

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 41

Floating point arithmetic

Multiply and divide:

1. Add (for multiply) or subtract (for divide) the exponents
2. Multiply/divide the mantissas
3 Normalise the result

(0.824 x10°) x (0.992 x10°)=?
(0.824 x 0.992) x10“*"=0.817408 x10°

(0.824 x10%) + (0.992 x10°)="?
(0.824 + 0.992) x10¥%=0.8306.. x10°°

And remember to check for zeros, consider hidden bits and over/underflow!

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 42

Floating point arithmetic

Guard bits:

Some floating point units operating on n-bit values have a width of
more then n bits. Guard bits are in the least significant positions to
reduce the effects of rounding, and ensure that the result is accurate

to n-bits. i
| | {- guard bit
Subtraction Subtraction
1.0000 0000 x 2° 1.0000 0000 0 x 2°
- 1.1111 1111 x 2° - 1.1111 1111 0 x 2°
Equalise exponents Equalise exponents
1.0000 0000 x 2° 1.0000 0000 0 x 2°
- 0.1111 1111 x 2° - 0.1111 1111 1 x 2°
Answer Answer
= 0.0000 0001 x 2! = 0.0000 0000 1 x 2%

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 43

Floating point arithmetic

Rounding:

Both floating and fixed-point arithmetic requires rounding. There are
four main methods of numeric rounding:

Round to nearest (default) : round to the nearest representable value,
and if two values are equally near, default to the one with LSB=0

" Round towards +< : round towards the most positive number.

* Round towards - : round towards the most negative number.

In practice, you can do each calculation twice, once rounding to
+0o and once to -co . Then the average of the two is used (and
the difference between the two gives the numerical accuracy).

* Round towards O : equivalent to always truncating the number.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 44

Computer requirements

Some questions to ask ourselves:

Where is it stored?

Program
J How is it represented?
How is it fetched?
: Data Where is it fetched to?

How is it read?
" 1/0 ./: How is it written?

—» Where is it read from/written to?

What execution units are needed?

* Execution units
What must they connect to?

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 45

Computer requirements

We need some method of directing the computer to perform various
tasks. This is accomplished by writing a program consisting of
sequential instructions (each is selected from an instruction set).

The instructions must be stored. Early computers used punched card,
later magnetic tape. Desktop computers started with magnetic disc
(floppies and hard disc), and then CD/DVD. Modern computers tend
to use flash memory or similar.

Basic ROM is also still used in many systems (it's cheap!)

Programs and data being processed are usually read from their storage
devices into RAM before execution.

Buses transport all this data around the computer, on command.

We will meet each of these elements in module 3.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 46

