Computer Architecture

An embedded approach

[Module 3]

CPU Basics
(making it work for you)

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 1

Contents

3.1 What is a computer?

3.2 Making the computer work for you
3.3 Instruction handling

3.4 Data handling

3.5 A top-down view

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 2

Computer requirements

As you know, programs are stored in machine code instructions
which are fixed (in most RISC devices such as ARM, PIC or MIPS)
or variable length sequences of numbers (as in many CISC devices
such as ADSP and Pentium).

Numbers stored in memory need to have a location that is accessible.
Early computer designers termed the location an address, and this
allows the CPU to select and access it. The most efficient way to

do this has been for the CPU to output the address it wants, wait for
the value in that address to be looked up, and to read in the value.

The address is output on an address bus, and the data is read on a data
bus. Some early microcomputers had multiplexed data and address
lines (to save on device pins). The number of wires in the address

bus limits the number of address locations that can be accommodated.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 3

Computer requirements

Once the instruction is inside the CPU it needs to be decoded, and then
executed. Different units inside the CPU perform different tasks, so the
data to be processed needs to be directed to the correct unit.

For this, there must be an internal CPU bus between the instruction
fetch and decode unit, and the processing unit. Also a bus to collect
the result of the processing unit, and place it somewhere.

In most modern CPUs, internal data is stored in registers, and this
data is collected from registers by processing units, altered and
returned to a register. So every processing unit must be connected
to a bank of registers.....

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 4

Computer requirements

However, in some processors, such as the ADSP2181, there is no
bank of registers - there are instead specific registers associated with
the input and output of each processing element.

Each processing element is limited to receiving its input from only
a few registers, and outputting to another small set. This means there

are many internal buses. Why?

Consider a section of the internal design
of the ADSP2181...

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 5

Computer requirements

Part of the ADSP2181 internal structure

PMA[0:13]
DMA[0:13]
PMD[0:23]
DMDI[0:15]
i/p regs
shifter
R[0:15]

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 6

The need for memory

If a computer is just a box that moves and manipulates data, then
there are three important things to consider:

 How to move data from one place to another
* How to manipulate data
* How to store data in one or more places

Memory is storage, for both data to be processed, and for the
program instructions that specify the movement and processing.

It can be volatile, non-volatile (more on that in Chapter 7)

It can be for long term storage or temporary storage.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 7

The need for memory

Some of the characteristics of memory:

» Cost

» Density (bytes per square or cubic centimetre)

» Power efficiency (nd per write/read or second of storage time)
» Access speed (seek time, burst time, read time, write time)

» Access size (bit, byte, block or page)

« Volatility (when power is lost...)

* Reliability

« Management overhead (if any)

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 8

The hierarchy of memory

Higher speed,
closer to CPU,
more costly registers

/ \

/ cache memorY\cachew

SRAM/DR}\Mnain _RAI\\/I\ J)
A\

flash/EPRON] disc controller caghe MMU

- Highest
tape, CO “ capacity,
lowest cost

=

Embedded system Desktop/server system

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 9

Transferring data

— A

32 tenal ena2

B FH>—

ena3 ena4

Buses transfer data to and from latches (or registers), and tristate
buffers (») arbitrate between these, all timed by a CPU clock, and
all controlled by a CPU control unit

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 10

Transferring data

Timing is everything!

5 separate clock cycles are used to enable and disable buses,
tristates and latch inputs in the correct sequence to transfer data
from register A to register B.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 11

Transferring data

So who or what determines the sequence and timing?

The control unit!

bus 1 1,/ = tristate buffer
RO
R1 —| bus 2
/ _
- PO Iy
R" % | P—)

ALU2

Yes — it's supposed to look like a complex mess...!

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 12

Transferring data

It is possible to have a neater control bus using multiplexing:

So we output 0000 to select RO, 0001 to select R1 and so on:
in fact, this is the way the registers are encoded within the
instruction word bits (see later).

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 13

Transferring data

All examples so far have shown centralised control:
control unit

fetch
decode

ena

na

execute

na

ena store

But self-timed control is also possible:

control unit

N done
ena fetch)

(:; done
ena decode;::>

C- execute déne

ena

C store

The control unit is much simpler (one output, one input!).
But distributed control is also possible.

done

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 14

Transferring data

External program ! . . N
’ Instruction | | Registers '

Fetch ABCD !

DEC A _ : : ;
PLB A : Microcode '
QWA C . Decode '
WRE B " X |
1 1

TRT C : y !
PPL A ' Execute 7 !
1 1

; ;

1 1

! load X<-n .

! ° | load Y<-1 .

- sub X<-X-Y !

' store n<-X !

1 1

1 1

1 1

' Data Memory -

E Interface :

DU e S I

© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach Page 15

Transferring data

Microcode allows complex instructions to be broken into
microprograms: sequences of simpler microcode.
This works well when:

1. External memory is limited / expensive.

2. The bandwidth from external memory into the CPU is
a bottleneck.

3. One type of CPU needs to execute the instructions of
another CPU (a type of emulation).

There is even something called nanocode (when each microcode
Instruction is itself a nanoprogram!).

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 16

Reduced Instruction Set Compute

Microcode instructions are typically very simple and fast to
execute. In fact, we can make an entire CPU that handles only
simple instructions, a Reduced Instruction Set Computer (RISC).

Because the instructions are simple, they are fast, but we usually
need more of them to perform a task. However the RISC CPU only
has to handle simple instructions, so it becomes small, fast and low

pow@ﬁ \ \ \ \ \ \ \ \ \ \ \ \
AllBICIDI EIF|G|H | JIKIL =instruction

CISC A, B,C D, E F, G, H, I J K, L
| | | | | | | | | | | | |

In this example, 12 data operations are performed. The RISC device needs
12 instructions to do this. By contrast, the Complex Instruction Set Computer
(CISC) has some powerful instructions that do several things together: it only
needs 5 instructions to do the same job.

However the CISC instructions are slower, so it ends up taking longer to finish
| th i
© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 17

Reduced Instruction Set Compute/a

RISC

The ARM is the most famous RISC architecture, followed by the
SPARC, PowerPC and MIPS designs.

CISC

The x86 series is the most famous CISC architecture, followed by
68000 and IBM System/360 designs.

Interestingly, many of the modern incarnations of CISC design
(including the Intel x86 series) actually use a RISC core plus a
translation unit; in effect they use a RISC microprogram, and a
RISC micro-engine to execute code.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 18

Instruction Handling

During operation, instructions from a program need to be fetched
from program memory storage, and brought into the CPU for

execution.

instruction

i B2 B2 R B B B OEC oG fetch and
B R AR || decode unit
pnnnannnnnnnnnnnnnnl Memory 1nnnnnnil
Controller : : units
instruction

L cache

Inside the CPU, they are decoded — so the CPU can decide how
to execute them: which resources such as registers, buses and
functional units need to be involved, and in what order.

The program counter (PC) holds the address of the next
Instruction to be read in and executed.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 19

Instruction Handling

The sequence of operations for program execution is:

fetch decode |_ fetch execute

instruction [~ | instruction E operand]_’ instruction

The loop around “fetch operand” is because there could be more
than one operand (in fact, 0, 1, 2, 3... or more!).

In fact, the diagram should continue after the “execute” stage:
« Update condition code flags
« Store result

Usually the PC is automatically incremented by 1 right after
instruction fetch, so it points to the next instruction.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 20

Instruction Handling

How is branching performed?
B target

1. The target address is part of the instruction word —
an immediate operand.

2. We simply store the target address into the PC register.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 21

Instruction Handling

Most processors use a conditional branch to form if-then-else,
for-next, do-while and case-switch constructs:

Bxx target

Where xx is a condition code, like this, which branches is the
condition flags (set by some previous instruction) resulted in
an answer that was non-zero:

BNZ target

However the ARM is cleverer, it can use a condition
code with every instruction (see Box 3.3 on page 87)!

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 22

Instruction Handling

Here are the condition codes used by the ARM CPU (and the
bits in the instruction word that encode them):

Bits Code Meaning

0000 EQ equal

0001 NE not equal

0010 CS carry set

0011 CC carry clear

0100 MI minus

0101 PL plus

0110 VS overflow set

0111 VC overflow clear
1000 HI higher

1001 LS lower or same
1010 GE greater or equal
1011 LT less than

1100 GT greater than
1101 LE less than or equal
1110 AL always

1111 NV never

Flag names:

Conditional on

Z=1

Z=0

Cc=1

C=0

N=1

N=0

V=1

V=0

C=1, Z=0
C=0, Z=1
N=V

N="V
N=V, Z=0
(N="V) or z=1

Z = zero, C = carry, V = overflow, N = negative

"© 2011 Dr I. V. McLoughlin

Computer Architecture: an embedded approach

Page 23

Variable-length Instructions

¢ 32 Dils =—
ARM ADD RO, R1l, R2 NOP MOV #1200, R7
LDR R1, [R2, #12] LDR R1, [R2, #12]! LDR R1, [R2], #12
LDR R1, [R2] LDR R1, [R2, #12], LSL #2
In most RISC processors, all instructions are of equal length, and
a lot can be accomplished with those fixed number of bits!
But this usually goes hand-in-hand with a load-store architecture.
H8S app.B r1, R2 NOP ADD.L #0x1234, ERO

MOV.L ER2,ER1

MOV.L @ER2,ERI1

MOV.L #12345678,ER1

MOV.L @87654321, ER2

MOV.L ER2, @(0x12345678, ERO)

Some processors, particularly CISC devices, have variable length
Instructions, depending upon what information needs to be
iIncorporated into the instruction word.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 24

Variable-length Instructions

For processors with variable-length instructions, Huffman encoding
can be used to improve processor efficiency.

This is based on the procedure of reducing the size of the most
common instructions, and increasing the size of the least common
iInstructions. This provides an overall size improvement.

For ninstructions, the probability of those instructions occurring is
found. The size of the encoded word used to represent
Instructions is inversely proportional to their probability (i.e. more
common instructions have shorter instruction words).

Note that in the real world, some applications may have very
different instruction statistics compared to the average...

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 25

Variable-length Instructions

Huffman example for 5 instructions:

Instruction Probability
MOV 0.5 "=====0.5 =====0.5 —-0.5) 1

ADD 0.3 =—0.3=0.3 0.5/ 0

SUB 0.08 0.12 2
CALL 0.06 0.08
AND 0.067 5, Mmovis "1 SUB s 000", CALL is "0011"

Order in terms of probability working from left to right.
Combine lowest two probabilities in the first column (add their
probabilities together) and then re-order the remainder in the
next column.

Combine the two lowest probabilities in this column, then
reorder the remainder into another column.

Continue until only two are left.

Then scan back through the tree from right to left.

At each column, call the upper path "1" and the lower path "0".

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 26

Addressing modes

| data register direct

2 address register direct

3 immediate addressing

4 absolute addressing

5 address register indirect

6 address register indirect with displacement

7 address register indirect with index and displacement
8 address register indirect with postincrement

9 address register indirect with predecrement

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 27

Addressing modes

Addressing modes: which are most efficient?

Here are some examples of using main memory for storage;

ADD A,B,C A=B+C CPU needs to read 3 memory locations,
and instruction must encode these 3 locations.

ADD A, B A=A+B CPU needs to read 2 memory locations,
and instruction must encode these 2 locations.

ADDB ACC=B+ACC CPU reads 1 memory location,
and instruction only encodes 1 location.

Is it possible to require no main memory locations?

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 28

Addressing modes

Addressing modes: which are most efficient?

ADD RO, R1 R0=R0+R1 CPU needs to access 2 registers,
and instruction encodes these 2 registers.
Butif there are 15 registers, we need 4
bits to encode each register...

ADD CPU pops the top two stack entries, adds them
and pushes the result onto the stack. This needs
to access the stack, but the instruction does not
need to encode any variable locations.

So how can we ensure that the stack holds the correct values?

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 29

Stack-based computation

Reverse Polish Notation (RPN):

Normally we use infix notation: a + b/c

With infix, there is a fixed precedence of operators (that can be
overridden using parentheses), but RPN is a postfix operation,
where the order of the equation defines the precedence.

When using a stack, scan from L to R, pushing values onto stack.

infix postfix
axb ab x
a+b/c abc /+

(a-b)xc ab - c x

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 30

Stack-based computation

NN

Pop off top

two values

& add them
Empty Push a Push b Push result
stack on stack on stack on stack

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 31

Stack-based computation

Reverse Polish Notation is useful for formatting stack operations

Infix postfix " al L b _anﬂ
a+b ab+ a
- > -
iV,
8
b a
L > g =
5
<

filling and emptying of the stack: each operator takes its argument
from, and places its result on the stack.

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 32

Stack-based computation

We will learn more about stack-based computation later when
we start working on TinyCPU...

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 33

Computer performance

How do | measure how fast is my computer?

 How many GHz (or MHz) does my processor clock at?

« How fast is the FSB (front side bus)?

« How fast is the cache memory (and how much is there)?

* How fast is my main memory (and how much is there)?

« The CPU width (is a 128-bit CPU always faster than a 32-bit one?)
* How powerful are my CPU instructions?

 How many MIPS (million instructions per second)?
« How many cycles per instruction?
 How many instructions per cycle?

 How many dhrystones/whetstones?
« How many SPECIint/SPECfp's?

‘ © 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 34

Computer performance

The answer is that all of these can be used, and have been
used to measure computer speed.

But be careful what you use to make a judgement!

Read Section 3.5 (pages 109 to 115): maybe you just have to
try it, running your program or application, to find out...

© 2011 Dr L. V. McLoughlin Computer Architecture: an embedded approach Page 35

