

Page 1© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Computer Architecture
An embedded approach

Module 4

Processor Internals
(What's happening

in there?)

Page 2© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

4.1 Internal bus architecture

4.2 Revisiting the ALU

4.3 Virtual memory

4.4 Cache

4.5 Co-processing

4.6 Floating Point Unit

4.7 SIMD/MMX

4.8 Other co-processors for embedded systems

Contents

Page 3© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A Programmers' Perspective

Assume we want to take two values and add them together;
A = B + C

In any CISC processor, we can probably always do this
calculation without worrying about how complex the operation
is in hardware. A, B and C might be registers, memory
locations, accumulators, stack values...

However in a RISC processor, values A, B and C would
probably have to be stored in registers before we begin.

Then, we would look in the CPU reference manual to fi nd an
ADD instruction we could use.

Just as in Section 3.3.4, we might fi nd some different types of
ADD that restrict what registers and values we can use...

Page 4© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A Programmers' Perspective

In most RISC processors, we can use any register for any part
of the ADD operation:

ADD R0, R0, R0
ADD R15, R14, R1
ADD R12, R12, R9
ADD R12, R9, R9

This complete fl exibility means something at an architectural
level:

All registers must be connected equally to the buses that feed
the ALU!

Page 5© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A Programmers' Perspective

In many RISC processors, also, the ADD takes only a single
cycle to execute:

ADD R1, R2, R3

Two data items have to be moved to the ALU, the calculation
needs to be performed, and then the result moved to a
destination register...

If all this happens in a single cycle, it also means something
special at an architectural level:

There are enough buses to convey two operands
simultaneously to the ALU inputs, and at the same time, to
convey the ALU result back to a destination register.

Page 6© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A Programmers' Perspective

The interconnection diagram probably looks something like
this:

R0

R1

R2

R3

R4

R5

R6

R14

R15

ALU

2nd operand bus

bus

result bus

1st operand

R7

R13

ADD R1, R2, R3

Three distinct
buses needed,
connected to
almost
everything...

Page 7© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A Programmers' Perspective

Consider the following alternatives. They all have the same
banks of registers, the same ALU. However they have
different numbers of buses.

R0
R1
R2

R15

bus 1

R

ALU

R

R

bus 2 R0
R1
R2

R15

R

ALU

R

R

R0
R1
R2

R15

R

ALU

R

R

i) The boxes labelled 'R' are registers – why do we need at least
one register in these designs?

ii) None of these can execute R0 = R1 + R2 in a single cycle.
How many cycles do they each take? Is R0 = R1 + R1 quicker?

Page 8© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

The ALU takes values from one or two locations, performs an
arithmetical operation, and writes the result to another location.

The result location may be the same as one of the input locations.

The locations are called registers. What is a register? It's simply
a data latch:

R1data in data out

Clock in clock out

These two clocks operate out-of-phase to each other.

A Hardware Perspective

Page 9© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Imagine a single bus architecture computer:

ALU
R0 R1 R2

The ALU operates on two values,
(i) stored value in the accumulator
(ii) a value stored in an external register

ACC

data bus

The ALU is a combinational device: its output will be
available a short time after its inputs have settled.

 NOTE: The control logic is not shown

A Hardware Perspective

accumulator

Page 10© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

So the sequence of events is:

1. Place the fi rst operand on the data bus
2. Output the second operand from the ACC
3. Wait for the ALU to perform its operation
4. Load result into ACC (unless result can go directly

to the destination register)
5. Remove the fi rst operand from the data bus
6. Remove the second operand at the ACC output
7. Output the result from ACC to another register

In practice we use a clock to ensure that the correct
sequence is maintained. The clock needs to have
two phases: �

1
 loads data into a register, and �

2

outputs data from the register.

A Hardware Perspective

Page 11© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

This is called a master-slave confi guration, using two
fl ip-fl ops (per bit):

master

slave

�
1

�
2

time

1 2 1 2

1. New data on the bus is latched by the master fl ip-fl op
into the register on the rising edge of � 1.

2. The stored data is latched as output from the register
to the output bus by the slave fl ip-fl op on the rising
edge of � 2.

register

A Hardware Perspective

Page 12© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

ALU
R0

ACC

data bus

�
2

�
1

Looking again at
the single bus
system, identify which
operations occur at the rising
edge of which clock cycle:

1. Place the fi rst operand on the data bus
2. Output the second operand from the ACC
3. Wait for the ALU to perform its operation
4. Load the result into the ACC
5. Remove the fi rst operand from the data bus
6. Remove the second operand at the ACC output
7. Output the result from ACC to another register

This operation needs 2 clock periods...
(or 3 if we included having to load ACC fi rst)

 NOTE: The control
 logic is not shown

A Hardware PerspectiveA Hardware PerspectiveA Hardware Perspective

�
2

�
1

Page 13© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

ALU

R0

Looking again at the
ALU, we can propose
a two-bus system to
improve performance:

1. Place the fi rst operand on
 data bus1
2. Output the second operand
 from the ACC to the ALU
3. Wait for the ALU to perform
 its operation
4. Load the result directly into R0

This operation needs only 1 clock cycle.

ACC

If we want to do any better, we need to go to a 3-bus
architecture system (which we met a few pages ago):

 NOTE: The control
 logic is not shown

A Hardware Perspective

�
2

�
1 �

2

�
1

data bus1

data bus2

Page 14© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

R0

R1

R2

R3

R4

R5

R6

R14

R15

ALU

2nd operand bus

bus

result bus

1st operand

R7

R13

ADD R1, R2, R3

A Hardware Perspective

Page 15© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

R0
R1
R2
R3
R4
R5
R6

R14
R15

ALU

2nd operand bus

result bus

1st operand bus

R7
R13

MAC

R0
R1
R2
R3

R4
R5
R6

R15

R7

M
A

C
A

LU

bus join

MAC buses

ALU buses

A Hardware Perspective

However, we usually have more than just one functional
unit. We could allow them to share the bus connections as in
a typical RISC processor (left):

Alternatively, we could start splitting the buses into regions
(right). This is used in some custom processors like the
ADSP218x series DSP.
This makes for high speed, doing two operations per clock
cycle, but is less fl exible (and harder to program).

Page 16© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

R0
R1
R2
R3
R4
R5
R6

R14
R15

ALU

2nd operand bus

result bus

1st operand bus

R7
R13

MAC

A Hardware Perspective

Both the data being acted upon, and the instructions which
specify those actions have to come from memory.

Even if the operation takes only 1 cycle to perform, we still
need to take 1 more cycle to fetch the instruction (and maybe
more to fetch the operands if they are in memory).
Two operations in parallel would be even worse!!

memory

But this story does not end there...

Page 17© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A Hardware Perspective

One solution is to fetch the NEXT instruction at the same
time as we process the PREVIOUS one. This is pipelining
(see chapter 5).

Another solution is to have two memory blocks. One which
contains the instructions, and one which contains data: this
is a Harvard architecture machine (as opposed to
von Neumann machines which have shared memory).

data
memory CPU program

memory
instructionsoperands

Or we could have single instructions that contain everything:
parallel operations, immediate operands, data moves etc...
We will explore this with EPIC/VLIW systems, in chapter 9.

Page 18© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Remember that one ALU contains a number of bit slices.
Logic operations such as AND, OR, NOR, all occur in
parallel, but arithmetic operations ADD and SUB need to
propagate their carries from lower bits up to higher bits.

Revisiting the ALU

C0

A0
B0

1-bit
ALUC1

A1
B1

1-bit
ALUC2

A2
B2

1-bit
ALUC3

A3
B3

1-bit
ALU

Z0Z1Z2Z3

It means that ADD and SUB are much slower operations...
and the more bits in the numbers being added, the slower
it becomes.

ALU

A

Function
select

Output, Z

B

status

n n

n

Page 19© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Usually the functions that can be selected are the following
arithmetic and logical operations;

Z = A + B Z = A – B
Z= A AND B Z= A OR B
Z= NOT A Z= A EOR B

However there are more possibilities in some ALUs...
NAND, NOR, DIV, MUL, remainder, multiply-accumulate

Revisiting the ALU

ALU

A

Function
select

Output, Z

B

status

n n

n

Page 20© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

The status output refl ects information concerning the outcome
of a calculation. The ARM ALU has 4 items of status:

N or negative � ag
the result of the last operation was negative

Z or zero � ag
the last operation resulted in a zero

C or carry � ag
the last operation generated a carry-out

V or over� ow � ag
the last operation caused a sign change

Note that in the ARM, the programmer can decide whether the
ALU leaves these fl ags untouched, or changes them, after
executing an instruction.

Revisiting the ALU

Page 21© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A
B

carry in

function select

Full adder

A AND B
A OR B

A + B

Revisiting the ALU

The following circuit diagram shows one bit of an ALU.
It ignores the status output, but shows how three functions
can be selected:

Z

carry out

Page 22© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A
B

carry in

function select

Full adder

A AND B
A OR B

A + B

Revisiting the ALU

Z

carry out

This diagram is important: if we know the propagation delay
of each gate (how long it takes for the gate output to stabilise
once the inputs change), then we can work out:
● How much time one bit calculation takes for each operation.
● The worst-case time for one n-bit operation.
● The maximum clock speed of the ALU.

Refer to Box 4.1 for a worked example.

Page 23© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Computer Memory

In some ways, the story of computing over the past half
century has been the story of a confl ict between computer
architects and computer programmers:

Computer architects make faster and more capable
computers with more memory so your programs run faster...

Programmers then add extra features and capabilities which
make the code bigger and slower...

One of the biggest battles has been over memory

Page 24© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Computer Memory

In computer architecture, there are several issues
that we have with memory:

1. Too slow!
Slow memory can 'starve' a CPU of instructions or data.

2. Too small!
Can't load and execute large software applications.

Luckily, the standard computer architecture toolkit has some
well-defi ned ways to solve these problems (apart from
“use more fast memory”, which is expensive):

Too slow –> use a cache

Too small –> use virtual memory

We will explore each of these in turn.

Page 25© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Virtual Memory

What is virtual memory?

This provides a very large space of memory that programs
can 'see' and access. In reality, the physical memory is
much smaller, with only the block (or blocks) of memory
currently being used by the CPU, actually located in physical
memory.
The remaining parts of the program and memory space are
stored in slower/bigger storage (such as hard disc).

Blocks are loaded and unloaded as required.

A Memory Management Unit (MMU) handles virtual memory
in a computer.

The technique was invented at Manchester University in 1962
bus is in extensive use today.

Page 26© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

MMU
CPU

physical RAM

hard disc

data bus

32-bit
address
bus

20-bit
address
bus

32-bit
address
bus

Virtual Memory

An example MMU system for a 32-bit CPU: we will
explore this further on the next page...

Page 27© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Virtual Memory

The CPU 'sees' a 32-bit address space (4 GBytes of memory),
but the physical RAM is only 20-bits wide (1 MByte).
The MMU hides the small RAM from the CPU.

Memory is split into pages. Assuming pages are 256 kBytes in
size, then main memory can hold only 4 pages at a time!
But the CPU can address up to 16384 pages.

The MMU's job is to load new pages into RAM, and store
unused pages to hard disc.

If the CPU wants to read some data from a page that is not
loaded, then the MMU first retires one page from RAM
(stores it back to HD), and then loads in the requested page.

To know which page to retire, the MMU has to keep track of
which pages are being used.

Page 28© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

physical RAM
contents table

disc memory
contents table

The physical RAM
address corresponding
to the requested virtual
memory location

The hard disc address
that holds the required
virtual memory page

page
no.

line
no.

miss
(page fault)

hit

virtual
memory
address

from
the CPU

Inside the MMU:

Virtual Memory

Page 29© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Imagine the CPU wants to read from a particular address.
The MMU splits this virtual address into a page and line.
e.g. if page size=20 then virtual address 29 is line 9, page 1.
Virtual address 44 would be line 4, page 2.

Next, the MMU looks in a physical RAM contents table
for this page. This look-up table knows if requested page is
already loaded in physical RAM,
and if so, at what real RAM
address. pa

ge
 n

o.

0
1

16382
16383 n/a

Y
Y

N
N

n/a

0x0000
0x0100

loa
de

d?

@
 R

AM

 a

dd
re

ss

If the page is already loaded,
the value the CPU wants is
simply retrieved from RAM at
the page address listed in the
table + the line number.
e.g. CPU reads from address 29:
the MMU knows that page 1 is in RAM
at address 0x0100. So it translates
the read address to 0x0100+9 = 0x0109

Virtual Memory

Page 30© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

If the required page is not loaded, this is called a page fault,
or miss. It means that the page number has to be sent to
the disc memory contents table. This holds the hard disc
address that the page resides at.

Before the new page is loaded from hard disc to physical
RAM, space has to be made, by saving one of the pages
that is already loaded, back to hard disc (and then updating
the physical RAM contents table).

Different algorithms can be used to decide which page is
retired back to the hard disc:

LRU (least recently used) - least recently used page retired
Can this cause any problems?

FIFO (First-in fi rst-out) - the oldest loaded page is retired

Virtual Memory

Page 31© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Speed of operation:

If the page needed is already loaded, reading from it is quick.

But a page fault (miss), means the CPU must wait until a
page is retired, a new page is loaded, and fi nally the location
is found and accessed in physical RAM. This is a stall.

A miss may be hundreds of times slower than a hit, so a
good virtual memory strategy attempts to minimise the
number of misses to maximise performance.

Virtual Memory

Page 32© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Fragmentation occurs when a program is allocated a number
of fi xed-size pages of memory, but does not completely
fi ll the last page.

Every time that page is loaded into physical RAM, some
unused space will be loaded and occupy the precious RAM!

So we need small pages!
But these are less effi cient to load/retire, and mean bigger
and slower contents tables..

Or, we can use variable length pages, called segments.

Virtual Memory

Page 33© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Ideally, segments should be able to grow dynamically
during program execution (as more memory gets used).

Segments can be protected from each other.
For instance, program memory segments are executable,
but read only. Data memory segments are read/write but
not executable.

● Attempts to branch to a data segment should result
in an error!

● Attempts to overwrite a program memory segment should
also fl ag an error!

These are really Operating System issues – we are more
interested in the MMU hardware operations...

Virtual Memory

Page 34© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Segmented memory spaces can be more effi cient than the
earlier paged systems because they do not suffer from
internal fragmentation.
However they are more complicated because we need
to keep track of the size and contents of each segment.

Unfortunately they also suffer from external fragmentation:

seg1

seg2

seg3

seg4

seg1

seg2

seg3

seg4

seg1

seg2

seg5

seg4

seg1

seg2

seg5

seg4

seg1

seg2

seg5

seg4

seg3

Virtual Memory

Sequence of operations

Page 35© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

To prevent external fragmentation, the memory area must
be compacted periodically:

seg1

seg2

seg3

seg4

seg1

seg2

seg3

seg4

seg1

seg2

seg5

seg4

seg1

seg2

seg5

seg4

seg1

seg5

seg4

seg3

seg2

Compact
before

loading
seg3

Unfortunately, compaction takes some time, so it is usually
performed only when necessary.
The world has many segment management algorithms, but
all of them need to track used and unused portions of memory.

Virtual Memory

Page 36© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

registers

cache memory

main RAM

disc controller cache

disc

tape, CDROM etc.

Highest
capacity,
lowest cost

fl ash/EPROM

SRAM/DRAM

Higher speed,
closer to CPU,
more costly

Embedded system Desktop/server system

MMU

cache

Memory in Computer Systems

Remember the memory hierarchy from Chapter 3?

We've just looked at the MMU – it can be slow but provides a
large virtual memory space to accommodate big programs.

Next we focus on making memory faster with the cache.

Page 37© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Cache Memory

The highest level caches (close to the CPU), are usually
implemented as fast on-chip memory.
These tend to be small (up to ~100k for ARM CPUs).

The Pentium Pro was an interesting case with two silicon
chips in one package: a 256k cache, and a Pentium CPU.

Unfortunately, there were many manufacturing issues...

L1 cache

CPU chip

level 2 cache level 3 cache

main memory

Pentium Pro motherboard

8kBytes
200MHz
SRAM

256kBytes
100MHz
SRAM

512kBytes
66MHz
SRAM

64MBytes
50MHz
DRAM

Page 38© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Split caches can be used separately for data and
instructions, especially for Harvard architecture processors.

Similarly to virtual memory, a cache miss is when the
required data is not in the cache, and has to be fetched
from slower memory.
Of course, some data has to be retired fi rst, and possible
some compaction take place.

The hit ratio is the percentage of wanted memory locations
that are found in the cache. The key to good cache design
is to maximise the hit ratio.

Let's consider different forms of cache organisation...

Cache Memory

Page 39© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Direct cache: Assume the cache has 2n entries, or lines.

Each cache location can hold one line of data from memory.

Each memory location corresponds to a fi xed cache location
(and as the cache is much smaller than the memory, each
cache location must map to to many memory locations).

So when the cache needs to check whether it holds a
particular memory address, it just needs to look in one
cache location, based on the address, for a matching tag.

The cache line is taken from the lowest n bits of the memory
address:

tag line

bit 0bit nbit 32

Cache Memory

Memory
address:

Page 40© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Direct caches actually contains a number of fi elds.
A dirty/clean fl ag indicates if a value has been changed
(but not yet stored back to main memory).
A valid bit indicates if the fi eld is occupied or not.
The tag entry indicates which of the possible memory
locations is actually being cached.

va
lid

dir
ty

✔

✗
✔

✔

✔
☹

☺

☹

☺
0000

0001

0000

XXXX

0100

XXXX XXXX

1A23 2351

0000 0051

0000 2001

FFFF FFF1

line 0

line 1

line 2

line 1023

line 1022

ta
g

da
ta

☺

Cache Memory

Page 41© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

So the direct cache operation algorithm is:

TO READ - split the required address into TAG and LINE.

Check the cache at the LINE location and see if the TAG
entry matches the requested one.

If it does, read the value from the cache.
If the TAGs do not match then look at the dirty fl ag.
If this is set, fi rst store the current cache entry on that line
back to main memory. Then read the main memory value
at the required address into that cache line.

Clear the dirty fl ag, set the valid fl ag and update the TAG entry.

Cache Memory

Page 42© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

TO WRITE - there is a choice:

write through writes the value into the cache line (fi rst storing
any dirty entry that was already there), and also writes the
value into main memory.
write back does not store into main memory (this will only
happen next time another memory location needs to use
the same line).
write deferred allows the write into the cache, and some time
later (when there is time available, the cache line is written
back to main memory).

Whenever the cache value is written to main memory,
the dirty fl ag must be cleared.

With write through, if the memory location is not already
in the cache, it is possible to directly store the data to memory,
bypassing the cache.

Cache Memory

Page 43© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Set associative caches:
The problem with the direct cache was that address locations
0, 1024, 2048, 3072 ... etc. all compete for one cache line.
To solve this, an n-way set-associative cache allows n
entries to each line:

�

�
�

�

�
�

�

�

�
0000
0001

0000
XXXX
0100

XXXX XXXX
1A23 2351

0000 0051

0000 2001
FFFF FFF1

line 0
line 1
line 2

line 1023
line 1022

ta
g

da
ta

�

�

�

�
�

�

�
�

�

�

0015
0002

0004

XXXX
0006

XXXX XXXX

4A93 B35F
FFF1 3060

0110 2409
0000 0003

ta
g

da
ta

va
lid

va
lid

dir
ty

dir
ty

�

Cache Memory

Page 44© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Set associative caches:

In our example 2-way set associative cache, there are two
possible locations where we can cache any main memory
address. Which one do we choose? Again there are a
choice of algorithms. One good algorithm is LRU (least
recently used) that we discussed under the MMU section
(good means better hit/miss ratio).. see later

Time taken for a hit:
Time taken for a miss:

Test for hit + retrieve value from cache
Test for hit
Run LRU algorithm
Check for dirty fl ag, and if necessary,
save current cache contents to memory then
Load wanted value from memory to cache
Retrieve value from cache.

These operations are
very slow

Cache Memory

Page 45© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Full associative caches:
Any memory location can be mapped into any cache location.
In this case the cache TAG holds the full address of its content.

The problem is that when the cache is asked to retrieve a
location, every cache entry TAG must be checked.
In the direct case, only one TAG needed to be checked.
In the n-way set associative cache, only n TAGs had to be
checked.

So although the chances of getting a good hit/miss ratio are
better, the operation of the cache itself is slower because of
the increased checking.

Cache Memory

Page 46© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Full associative caches:
Some caches actually read blocks of memory rather than just
single memory locations. In this case, the TAG is the start
address of the block, and the cache controller knows that m
consecutive memory locations are cached in one cache line.

Cache coherency: ensuring that all copies of a memory
location in caches hold the same value. This is particularly
important for multiprocessor systems when a value written
to one CPUs cache may be needed by another CPU.

How does the second CPU know that its cached value
is no longer the latest value?

Cache Memory

Page 47© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Replacement Algorithms - which cache location is replaced
when there are several possibilities to choose from?

LRU scales with the size of the cache, and performs reasonably

FIFO replace the location that has been longest in the cache. Is
easy to implement in hardware, and also performs reasonably well

LFU replace the least frequently used location. This needs each
cache entry to have a counter & circuitry to compare the counters.

Random very easy to implement in hardware; just pick a random
location. Surprisingly this technique performs quite well.

 caches must be FAST, so these need to be implemented in hardware

Cache Memory

Page 48© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Cache performance:

Variables used within a program are usually stored
consecutively in memory (this is the principle of spatial locality).
The levels of procedure nesting are usually limited, so only a
few sets of variables are in use at any one time (this is
temporal locality: see Section 4.4.4 of the book for an
explanation of locality).

If cache location M
1
 has access time T

1
 for a hit, but for a miss

we need to transfer word M
2
 from main memory into M

1
, with

transfer time T
2
 and hit rate, H=no.cache hits/no.requests

then overall access time:

T
S
 = H x T

1
 + (1 - H)(T

1
 + T

2
) = T

1
 + (1 - H)T

2

Cache Memory

Page 49© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Cache design is a compromise between speed, size and cost:

� Decide average memory access time required.
� Work out the hit rate needed.
� Choose cache size to give required hit rate.
� Check average cost of memory per bit is not too expensive.

For your information, a good cache would probably have a
hit ratio of over 0.75.

Some processors have fast internal memory instead.
The ADSP2181 has 80k of on-chip memory which can all be
accessed within a single instruction cycle, so no cache may be
needed... some embedded CPUs have similar arrangements.

Refer to Section 4.4.6 in the book for cache design and
performance analysis.

Cache Memory

Page 50© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Co-processing

Sometimes processors contain a co-processor to handle
specialised tasks. These tasks might be operations that
are diffi cult or slow on a general purpose CPU.

The co-processor might save energy, time or just free up
the CPU for other tasks.

Here are some common ones (roughly arranged with the
most common at the top):

● Floating point unit
● Graphics processing unit
● Network or input/output processing element
● Graphics processing unit
● Cryptography unit
● Audio processing unit
● Wireless unit

Page 51© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Floating point unit

The Pentium FPU is basically unchanged since it appeared
in about 1986 as the 80387, which was a separate co-pro
for the 80386. Today it's just included as standard in the
Core CPUs and beyond.

In operation, the CPU loads operands into special registers
which are shared between the main CPU and the FPU, and
then the FPU is activated.
Some time later, the FPU returns the result to the special
register area, and optionally informs the CPU through an
interrupt. Most modern processors include the FPU inside
an execution pipeline.

FPUs can't access data directly, only operate on what the
CPU
passes to those special purpose registers (long enough to
hold IEEE 754 double precision numbers).

Page 52© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Floating point unit

Many embedded CPUs, especially for smaller or low-power
systems, do not have a dedicated fl oating point unit (FPU).

Instead, they use a software fl oating point emulator (FPE)
which can be tens or even hundreds of times slower than
an FPU.

Therefore, if you write code for such systems, try not to use
fl oat or double data types – stick to int and short if possible.

Page 53© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

SIMD/MMX/SSE

The history of these devices has really been to accelerate
some of the types of data more commonly used in desktop
computers:

MMX: multimedia extensions
SSE: streaming SIMD extensions from Intel
3DNow!: AMDs version of MMX/SSE

Although they still exist, the original reason was largely for
speeding up graphics handling. However these have largely
been superseded by graphics processing units (GPU).

Still, sometimes, great performance gains can be found by
rewriting some intensive code routines to use these units.

Page 54© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Co-processing in embedded systems

Consider the following co-processors available on ARM
computers:

Jazelle for speeding up Java processing
NEON advanced SIMD accelerator similar to SSE/3DNow!
VFP vector fl oating point co-processor

Cryptographic engines are also becoming more popular on
embedded CPUs as the need for security increases with
the more and more important role that embedded systems
are gaining in our lives.

One very capable system is the integration of a small FPGA
with an ARM processor. The FPGA can be confi gured as
almost any co-processor and used by the ARM to accelerate
various types of processing.

