

Page 1© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Computer Architecture
An embedded approach

Module 5

Faster
and

faster!

Page 2© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

5.1 Speeding up

5.2 Pipelining

5.3 CISC vs RISC

5.4 Superscalar

5.5 Instructions-per-Cycle

5.6 Hardware Acceleration

5.7 Branch Prediction

5.8 Parallel Machines

5.9 Tomasulo

Contents

Page 3© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

It makes sense that a higher speed clock would make a CPU run
faster, but unfortunately we soon hit some limits. So other options
are needed. Many have been tried:

Do more per clock cycle (CISC)

Do less per clock cycle (RISC)!

Perform operations in parallel

Speed up some common operations

Speed up some complicated operations

Identify and fi x performance bottlenecks

We're going to look at each of these approaches over the next
few pages, starting with the most common response: pipelining.

Speeding up

Page 4© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Imagine you need to do four things (or “stages”) to process each
instruction in a CPU:

If we perform these in sequence, as fast as possible, the
instructions are a long way apart, and a program will be slow:

However, it is important to realise that because the stages are
different, they actually make use of different hardware... so the
hardware unit that performs Stage A is different from the unit that
does Stage B, and so on.

Pipelining

Stage A

Stage C

Stage B
Stage D

Stage A Stage CStage B Stage D Stage A Stage BStage D

Page 5© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Let us look at what the hardware units are doing:

Pipelining

Stage A

Stage C

Stage B

Stage D

Stage A

Stage B

Stage D

time

Unit A

Unit B

Unit C

Unit D

Stage A Stage CStage B Stage D Stage A Stage BStage D

None of the hardware units looks busy... most of them are only
doing something for a short period of time, then are idle.

Page 6© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Can we make the hardware units work harder? Yes:

what we have done is allowed each instruction to overlap the
previous one.

While Unit A is handling Stage A for one instruction, Unit B is
handling Stage B for the previous instruction...

Pipelining

Stage A

Stage C

Stage B

Stage D

Unit A

Unit B

Unit C

Unit D

Stage A

Stage C

Stage B

Stage D

Stage A

Stage C

Stage B

Stage D

Stage A

Stage C

Stage B

Stage D

Stage A

Stage C

Stage B

Stage A

Stage B

Stage A

Page 7© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

In real pipelined CPUs, stages might include:

Fetch instruction
Decode instruction
Fetch operand
Execute instruction

For now, it does not matter exactly which stages are present,
because we are only exploring the concepts (and every CPU
does things slightly differently), but the sequence of operations
is important, and the fact that these operations can overlap –
SOMETIMES!

Page 8© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

To explore this, consider what happens when we execute
instructions. There are several phases to execution (assume
an ARM style CPU):

FETCH Fetch instruction from memory to the instruction decoder

DECODE Decode the instruction and decide what to do with it

LOAD Load the operands for the instruction

EXECUTE Send the instruction to the correct execution unit for processing

RESULT Collect the results of calculation for updating status fl ags

SAVE Save the result in the correct location

Pipelining

Page 9© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

Invented by IBM, a pipeline is a process that often increases the
length of time that a CPU takes to process an instruction, but allows
the instruction operations to overlap, so increasing throughput.

Fetch instruction

Decode

Fetch operand(s)

Execute I1

I1

I1

I1

I3I2

I2

I2

I2

I3

I3

I3

instruction cycle

pipeline cycle

In the example above, 4 instructions fi nish in one instruction cycle.
Without a pipline, one instruction must fi nish before the next one
starts...

Page 10© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

So an n-stage pipeline means that the CPU can operate at a
maximum of n times faster than without a pipeline.
The picoJavaII has a 6-stage pipeline, whilst the ARM7 has a
3-stage pipeline. The ADSP2181 has no hardware pipelining.

To pipeline any task, it is necessary to split the task into a number
of sequential subtasks, and connect these linearly in a serial
fashion:

T1 T2 T3 T4input

pipeline clock

latches

Synchronisation is maintained with latches.

Page 11© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Commonly, pipelines combine some of these functions into single
units. There are many possible designs of pipeline, but here are
some you can fi nd in modern processors:

3 stage (F – E – S)
FETCH & DECODE – LOAD & EXECUTE & RESULT – SAVE

4 stage (F – D – E – S)
FETCH – DECODE & LOAD – EXECUTE & RESULT – SAVE

5 stage (F – D – L – E – S)
FETCH – DECODE – LOAD – EXECUTE & RESULT – SAVE

Normally the slowest processes live in a unit on their own.
These are often going to be the ones that do:
1. Memory accesses (load or save)
2. Some sort of complicated calculation (FPU?)

Pipelining

Page 12© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

RISC processor pipelines have grown over the years:

ARM2 (1988) 3 stages FETCH – DECODE – EXECUTE
ARM9 (1998) 5 stages FETCH – DECODE – EXECUTE – MEMORY – WRITE
ARM11 (2002+) 8 stages FETCH1 – FETCH2 – DECODE – EX – WRITE

EX for ALU is: SHIFT – ALU – SATURATE
EX for MAC is: MAC1 – MAC2 – MAC2
EX for MEM is: ADD – CACHE – WRITE

Some research machines have even longer pipelines.

Get some background about the ARM (but not the pipeline):
http://tisu.it.jyu.fi /embedded/TIE345/luentokalvot/Embedded_3_ARM.pdf

If you are having trouble understanding the concept of a pipeline, look here:
http://www.pcmech.com/article/understanding-processor-pipelining

Pipelining

http://tisu.it.jyu.fi/embedded/TIE345/luentokalvot/Embedded_3_ARM.pdf
http://www.pcmech.com/article/understanding-processor-pipelining

Page 13© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

T1 T2 T3 T4input

Pipelines can be uni or multi-function. The latter allows different
routes to be taken through the pipeline, but is very diffi cult to
control in hardware.

T1 T2 T3 T4input

unifunction pipeline

multifunction pipeline - set up
to perform a different function

Page 14© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

possible
instruction
paths

1

2

fi rst and
second
instructions

T1 T2 T3 T4Input

1

2

3 A dynamic multi-
function pipeline

A multi-function pipeline can change it's confi guration
either dynamically, in which case it allows a different route
to be taken by every instruction, or statically, in which case
it must be cleared of instructions before the alteration occurs.

Page 15© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

The slowest instruction in a pipeline will be the bottleneck because
all tasks are clocked with equal duration.

Given a program with s instructions. Each instruction needs n clock
periods to execute. The total time required to run this program with
no pipeline is TI = sn

With an n-stage pipeline and 1 clock period between stages the
total time required for execution is TN = n + (s -1)
(it takes n clock periods for the fi rst instruction to run through the
pipeline, plus s-1 periods until all the other instructions have
fi nished)

Speedup is defi ned as SN = TI/TN = sn/(n + s -1)

and as s -> � , SN -> n
(potential maximum speedup with infi nite instructions)

Pipelining

Page 16© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

A measurement of pipeline effi ciency takes into account that some
units are not being used during start-up and end;

Effi ciency= aggregate unit operating time/(n × pipeline operating time)

= s / (n + s -1) [actual speedup / theoretical maximum speedup]

but look at this equation - it's almost identical to the speedup
equation on the previous page! So we can say that;

Effi ciency= SN/n

Throughput is the number of tasks completed per unit time;

throughput = s / (n + s -1) = effi ciency !

Page 17© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

Pipelines work well when they are continuously operating and full.
Effi ciency drops if they empty (either deliberately in order to change
a static pipeline, or because of the sequence of instructions).

A sequence of NOPs could empty a pipeline....

And so could a conditional branch:

I1 ADD R0, R0, R1
I2 AND R4, R2
I3 SUBS R2, R0
I4 BGT loop

In this example code segment,
the branch depends on the
previous instruction. This needs
to run completely through the

pipeline before it is known whether the branch is going to be taken,
so the pipeline stalls to wait for that instruction.

Page 18© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

One way to minimise the pipeline stall is to continue executing the
instructions following the branch speculatively. If the branch does
not occur then there was no pipeline stall. If, however, the branch
does occur, the pipeline must be fl ushed of the speculative
instructions. On average, this reduces pipeline stalls by 50%

Some CPUs have multiple pipelines (IBM 370). One pipeline
assumes the branch is taken, the other assumes it is not. The
incorrect pipeline is fl ushed, and there is no penalty (but this
assumes only two branch alternatives). Some advanced CPUs
predict branches based on past history (either local for this
branch, or global). See later!

Finally, processors like the TMS320C5XX provide delayed branch
instructions: forcing the programmer/compiler to deal with the issue.

Page 19© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Often, a good compiler will re-order instructions to optimise their
performance when using a pipelined processor, and to reduce
branch penalties. Some compilers insert NOP commands to deal
with delayed branches. This can sometimes improve performance.

Multiple conditional branches within a short area of memory can
compound branch penalties, and only those CPUs with delayed
branch instructions can processes computed jumps without loss
of effi ciency.

Unconditional branches cause less problems: the pipeline
simply follows the branch.

Pipelining

Page 20© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

Delayed branches:

I1 ADD R0, R0, R1
I2 MOV R1, mem
I3 AND R4, R2
I4 BGT loop

I1 ADD R0, R0, R1
I2 AND R4, R2
I3 BGTD loop
I4 MOV R1, mem

The example code fragment shows the positioning of a delayed
branch compared to the same branch with no delay;

The BccD instruction goes into the pipeline and the branch made
after the next instruction ends (i.e. when the outcome of I2, which
determines the branch, is known). So the pipeline is not stalled!

But with the Bcc, the pipeline must wait until the previous instruction
completes. Only then will it know if it should take the branch or not.

Page 21© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipeline hazards: data dependency

RAW (read-after-write) hazards arise when one instruction relies
upon the output from the previous instruction:

ADD R0, R2, R1 ;R0=R2 + R1
AND R1, R0, #2;R1=R0 & 2

In a pipeline, there would have to be a stall, waiting for the ADD to
complete before the AND commenced.

There is also an antidependency or WAR (write-after-read)
hazard here, because the AND must not change the value
of R1 before the ADD has used the value that is in R1.

Pipelining

Page 22© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipelining

Pipeline hazards: data dependency

WAW (write-after-write) hazards arise when two nearby instructions
must write to the same location, but that location is needed by a
third instruction:

ADD R0, R2, R1 ;R0=R2 + R1
AND R1, R0, #2 ;R1=R0 & 2
SUB R0, R3, #1 ;R0=R3 - 1

The AND has a very short time window when it can access R0. If
it reads too early or too late, it gets the wrong value.

In non-pipelined, or simple static pipelined machines there is no
problem, but imagine the diffi culties for multi-pipeline machines
or dynamic pipelined machines.

Page 23© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipeline hazards: detection and solution

A good compiler should detect these hazards, and reschedule
instructions accordingly (or insert NOPs to separate instructions).

In summary, dependencies between instructions i and j exist if
there is;
anything that i can do to affect the result of j or
anything that j can do to affect the result of i

Including:
The same registers being used for input or output, the same
functional unit(s) being needed, some mode change or condition
setting by one of the instruction when the other instruction is
conditional.

Pipelining

Page 24© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipeline hazards: detection and solution

Processors should check for hazards and resolve them either by
introducing a pipeline stall, or by a hardware technique such as data
forwarding.

This is the technique of passing the result of one function directly
to another function, without passing through an intermediate
register fi rst. This can often be done in software as well as through
hardware. A software example (done by compiler) could be:

MOV $1000, R0
MOV R1, $1000
AND R0, R1, R2

MOV $1000, R0
AND R0, R0, R2

replaced by:

This is called store-fetch forwarding

Pipelining

Page 25© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipeline hazards: detection and solution

MOV R0, $1000
ADD R2, R0, R1
MOV R1, $1000
ADD R3, R2, R1

MOV R0, $1000
ADD R2, R0, R1
ADD R3, R2, R0

replaced by:

Fetch-fetch forwarding is slightly different, multiple reads from a
single memory location are replaced by holding that value in a
register (or even in a fast on-chip stack):

Store-store forwarding replaces multiple writes to one memory
location by intermediate storage in an internal register, followed
by a single, fi nal write.

Pipelining

Page 26© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipeline hazards: detection and solution

These methods of fetch-fetch, store-store and store-fetch data
forwarding are usually optimisations performed during compilation
by a good compiler. However similar operations can occur in
hardware directed at run-time by the CPU.

ADD R2, R0, R1
SUB R2, R2, R0

In this code fragment, the SUB instruction requires the output
from the ADD as an operand. This is passed in register R2.
It also writes its own output to the same register.
This demonstrates more than one type of data dependency.

Pipelining

Page 27© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Pipeline hazards: detection and solution

ADD R2, R0, R1
SUB R2, R2, R0

Consider the pipeline path for this
code fragment:

FI FO EX SRInstruction R2

FI: fetch instruction, FO: fetch operand, EX: exectute, SR: store result

forward the result of the
previous instruction (R2)

The value that is supposed to store to R2 after the ADD is passed
directly as one of the SUB instruction operands. The fi rst store to R2
is skipped - the value will be overwritten by the second store anyway.

Pipelining

Page 28© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Another example of
data forwarding:

MOV R0, m1 (1) R0=m1
ADD R0, R0, m2 (2) R0=R0 + m2
MUL R0, R0, m3 (3) R0=R0 x m3
MOV m4, R0 (4) m4=R0

X M3

M2R0

M4

M1

1 2a

2b

2c

3c 3b

3a

1, 2a

2b2c, 3a

3b

3c, 4

4

8 data transfers

5 data transfers

X +M3

M2R0

M4

M1

+

Pipelining

Page 29© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

How does a pipeline know what stages the current instruction
needs to go through? Or which processing unit to send operands
to? Or whether to stall the pipeline at times?

In a simple CPU, this can be directed by a hardwired control bus,
but in a CISC machine, or a machine with a complex pipeline, the
control hardware could become more complex than the CPU....

In the previous module we met one control solution: microcode.
The technique was invented at Cambridge University in the 1950s
but is still used today on some of the modern CISC processors.

RISC machines usually have simple, regular, single-cycle
instructions and a load-store architecture.
All attributes that make pipeline design easy!

RISC/CISC and Microcode?

Page 30© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

As pipelines become more complex, the opportunity for hazards
increases. Multi-pipeline machines, in particular, require considerable
resources devoted to detecting and preventing hazards. One solution
is to keep a single, linear pipeline, but provide it with multiple
functional units. This is called a superscalar architecture.

instr.
fetch

instr.
decode

operand
fetch

write
back

A 5-stage superscalar pipeline

ALU

ALU

FPU

MOV

Superscalar

Page 31© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

With the superscalar pipeline just presented, the operand fetch unit
can actually issue instructions at a faster rate than any of the
processing elements can handle. It makes sense to interleave
instructions to the two ALUs, the FPU and the load/store unit (MOV).

The most time consuming element (the FPU) does not need to hold
up the pipeline while it is operating because other non-dependent
ALU and memory move jobs can still be handled.

The Pentium II has this type of superscalar architecture whilst earlier
pentiums had dual pipelines (and the 486 had only a single pipeline).

Superscalar

Page 32© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Often the different execution units will run at different speeds. Here is an
example:

This machine has 2 ALUs, 1 FPU and 1 MUL.
● When two instructions fi nish execution simultaneously, the earliest

issued gets stored fi rst.
● In 12 clock cycles only 6 instructions fi nish...

fetch & decode ADD SUB AND1 FADD NOT MUL1 MUL2 - - - NOR AND2 NOT

ALU ADD AND1 NOT

ALU SUB NOR

FPU FADD

MUL MUL1 MUL2

store result ADD SUB AND1 FADD NOT MUL1

Clock cycles: 0 1 2 3 4 5 6 7 8 9 10 11 12

Superscalar

Page 33© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Superscalar

fetch & decode ADD SUB AND1 FADD NOT MUL1 MUL2 NOR AND2 NOT NOP

buffer MUL2

ALU ADD AND1 NOT AND2

ALU SUB NOR NOT

FPU FADD

MUL MUL1 MUL2

store result ADD SUB AND1 FADD NOT MUL1 NOR AND2

Clock cycles: 0 1 2 3 4 5 6 7 8 9 10 11 12

Interestingly, we can substantially improve the machine of the previous
page if we place a one instruction buffer after the fetch & decode unit:

Now 8 instructions complete in 12 clock cycles. The buffer just stores instructions
that can't execute yet because the functional unit that they require is not free...

Note: this doesn't fi x issues of dependency (i.e. if NOR input requires the result from
MUL2 then we can't do something like this) – see later.

Page 34© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Instructions-per-Cycle (IPC) measures how quickly (in clock cycles)
a program of given length gets executed.

CISC: IPC usually << 1.0
but some instructions can do a lot!

RISC: IPC approaches 1.0
simple, short instructions that execute quickly

Superscalar: IPC approaches n (for n issues per cycle)
usually heavily pipelined RISC-based designs

VLIW/EPIC: IPC >> 1.0
(see module 9)

Parallel: n cores approach n times their individual IPC
but lots of questions remain - can we achieve this?

Instructions-per-Cycle

Page 35© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Hardware acceleration can include co-processors dedicated to
performing specialised tasks (FPU or MMX), or other dedicated
hardware speed-ups such as:

●zero-overhead loops
●dedicated address generation units
●shadow register sets
●hardware stack
●inter-processor communications

Hardware acceleration

Page 36© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Zero-overhead loops:

Many DSP processors especially need to execute code that
consists of compact, fast, loops. These could be for(), while(),
or do() loops.

A standard CPU needs to set up a register with the control
variable, add/subtract from it at the start or end of the loop,
and perform a comparison for end-of-loop condition.

The instruction cycles needed to perform these operations are
termed the loop overhead.

Hardware acceleration

Page 37© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

The loop overheads can be reduced in two main ways.

1. address generation hardware (see later)
a separate hardware unit contains registers and a simple ALU
which can load a loop variable and its step, and terminate the
loop on fulfi lment of a simple condition

2. a PC trap
a register is loaded with loop end-value. When the PC is
found to hold this address, its increment to next instruction
is cancelled, and it is reset to the start of the loop. The loop
condition is checked at the top of the loop.

Hardware acceleration

Page 38© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Zero-overhead loops:

Standard loop:

MOV R0, #count
loop

.....
(body of loop)
.....
.....
SUB R0, R0, #1
BGT loop

(outside the loop)

Zero-overhead loop (ADSP2181)

MOV CNTR, #count
DO loop UNTIL LE

.....

.....
(body of loop)
.....
.....

loop (outside the loop)

Hardware acceleration

Page 39© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Zero-overhead repeat
(TMS320C50)

MOV BRCR, #count
RPTB loop-1

.....

.....
(body of loop)
.....
.....

loop (outside the loop)

For a loop repeating 512 times,
a standard CPU would have an
overhead of 1 instruction outside
the loop, and 2 instructions inside
totalling 1025 wasted cycles.

A zero-overhead loop may have
one or two set-up instructions
followed by no overhead inside
the loop: a total of only 2 wasted
cycles.

Hardware acceleration

Page 40© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Zero-overhead loops: how to design the hardware?

Hardware acceleration

program
counter

loop end
address

loop start
address

address
compareselect

inc

program
counter

Page 41© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation units are commonly used to
perform addressing arithmetic in parallel with data processing
operations. This is most successfully used in the ADSP2181
which has two data address generators (DAGs) and a set of
dedicated address registers.

The alternative is to take the approach of the ARM and perform
all arithmetic (data and addressing) with a single ALU and a bank
of general purpose registers.

We now investigate both approaches...

Hardware acceleration

Page 42© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation units:

The ADSP2181 DAGs each contain four I, L and M registers;

I0
I1
I2

I3

L0
L1
L2
L3

M0
M1
M2

M3

I4
I5
I6

I7

L4
L5
L6
L7

M4
M5
M6

M7

The I (index) registers contain actual addresses whereas the
L register contains a length and the M registers are address
modifi ers.

There are different ways of using the DAGs:

DAG1 DAG2

Hardware acceleration

Page 43© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation units:

For address register indirect addressing, an operand is fetched
from the address in the I register (of course, it can be used directly
too).

Address register indirect with post increment/decrement can be
used by specifying an M register in the instruction. Any M register
in the same DAG as the I register can be used to modify the I
register after the access (the M register is signed so it can hold a
negative value).

The L registers are used to implement wrap-around or circular
addressing. If an L register corresponding to any I register is non
zero, then when the I register has been modifi ed (by any M
registers) so that the I register has reached an offset from its
original value equal to the L register, the I register is set back to
its original value.

Hardware acceleration

Page 44© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation units:

There is actually one dedicated ALU for each DAG. This can add
any of the 4 M registers to any of the 4 I registers, compare the
new I value with the L register, and store the new I value (either
the added value, or the reset value) back to the register.
This all happens within a single instruction cycle.

Having two independent DAGs means that both operands to an
instruction can use any addressing format, and still complete in a
single instruction cycle.

In addition, one of the DAGs can bit reverse its addresses (useful
for doing an FFT, Fast Fourier Transform).

Hardware acceleration

Page 45© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation units: of the ADSP2181

mux

address
register selected
by the instruction

DMD bus

2

1414 14

14

22

DAG2

Hardware acceleration

L0
L1
L2
L3

I0
I1
I2
I3

M0
M1
M2
M3

compare add

Page 46© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation units: of the ADSP2181

ADSP2181 assembly language has special instructions to help
manage the complexities of the dual DAGs:

reg=DM(I3,M2) ; loads reg with the value at data memory
; location I3, then adds M2 to I3. If L3=0
; then I3 is set to the new value (otherwise...)

How to set up and use a circular buffer:
L0=128 ; buffer is 128 memory locations long
I0=buffer ; I0 holds address of the start of the buffer
M0=2 ; inc. buffer by 2
M1=-1 ; or by -1 each time it is accessed

Hardware acceleration

Page 47© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation units: of the ADSP2181

AX0=DM(I0,M0) ; read buffer element 0, pointer set to 2
AY0=DM(I0,M1) ; read buffer element 2, pointer set to 1

If this instruction is placed in a loop, it will read each of the elements
in the circular buffer into AX0 and AY0 in turn:
First time around,

AX0=buffer[0] and AY0=buffer[2]
second time around,

AX0=buffer[1] and AY0=buffer[3]
....
eventually,

AX0=buffer[126] and AY0=buffer[0]
and then,

AX0=buffer[127] and AY0=buffer[1]

Hardware acceleration

Page 48© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation units: of the ADSP2181

The on-chip data and program memory of the ADSP2181 and the
powerful dual Data Address Generators, this CPU can access
operands in two memory locations indirectly with post-increment
and wraparound, as well as process the instruction that uses those
operands, in a single instruction cycle.

Hardware acceleration

Page 49© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation: of the ARM7

By contrast, the ARM chip, being a RISC design seeks to minimise
specialised hardware (like DAGs), but to process every instruction
as fast and as effi ciently as possible.

The ARM only has one instruction* to load data from memory to
the register bank, and one to save it. This is called a load/store
architecture (an extension allows multiple registers to be loaded
or saved from sequential locations). Once data is loaded to a
register, all internal operations can be performed on it.

The address to load from/store to can be indexed, with pre- or
post-offset (increment/decrement). It can be direct or indirect.

* another swap instruction can do this but is designed for multiprocessor systems.

Hardware acceleration

Page 50© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Dedicated address generation: of the ARM7

Since the ARM does not have dedicated address ALUs, it must use
the main ALU and associated functions. This has one major
advantage (apart from reducing transistor count) in that it is more
fl exible: it is not confi ned to the DAG operations of the ADSP2181.

The ARM can use a special scaled register address indexing mode,
where the address offset register can be multiplied or divided by
a power of 2 before or after (pre- or post-) access:

LDR R0, [R1, R2, LSL#2]
This loads the value at location (R1+(R2*4)) into R0
(LSL means logical shift left)

Hardware acceleration

Page 51© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Shadow Register Sets

When implementing re-entrant code, it is necessary to store
the context of the current registers at the beginning of the routine,
and then restore them at the end. The state of the CPU at the
end of the routine should be the same as it was at the beginning.

One example of when this is necessary is in interrupts because
these can occur at any unpredictable time during program
execution.

Consider an example of a serial port interrupt.

Hardware acceleration

Page 52© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

For a PC-style serial port, a single chip usually interfaces to the
CPU and outputs data serially. The chip has a built-in buffer of
usually 16 to 64 bytes. It outputs data, emptying this buffer
normally without the intervention of the CPU.
However, when the buffer is nearly empty, the serial chip
interrupts the CPU to request that the buffer is refi lled.

Since the buffer is still being emptied, the CPU needs to quickly
fi ll up the buffer before it empties (which would cause an underrun).
So an interrupt service routine (ISR) is used to service the interrupt
and do this.

An interrupt can occur at any time: It is usually not possible to
predict what the CPU will be doing at that instant. Most CPUs will
fi nish the instruction they are currently executing, fl ush their pipelines
and jump to the interrupt service routine (via an interrupt vector).

Hardware acceleration

Page 53© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A serial port ISR would need to do the following:
1. save the state of the CPU
2. disable other interrupts (possibly)
3. get data from memory and pass it to the serial chip
4. restore the state of the CPU
5. re-enable interrupts
6. jump back to the code it was executing before interrupt

The state of the CPU includes all status registers, and all other
registers that might be changed by the ISR. Registers that are not
going to be changed by the ISR do not need to be saved.
In an ARM this might be R0, R1, R2, R3, CPSR (status register).

If each write to main memory requires 4 instruction cycles, this totals
20 cycles (probably a lot more for a write-through cache).

Hardware acceleration

Page 54© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

If the interrupt is very frequent (it would be if the serial transmit rate
is high, or the serial chip buffer is small), 20 instruction cycles to save
context, and another 20 cycles to restore, is a very heavy system
overhead.

To alleviate this problem, shadow register sets (alternative register
banks) are hardware sets of backup registers that are automatically
used for interrupts (and certain other occasions).

The original registers are unchanged, so at the end of the routine,
a single instruction restores the previous context. This is one
instruction cycle instead of the 40 above.

The ADSP2181 has a complete set of its 19 ALU, MAC and SHIFTER
registers in a single shadow bank (but the DAGs are not shadowed).

The ARM only shadows some registers, but it has 5 shadow banks (for
various interrupts and exceptions) instead of the ADSPs single bank.

Hardware acceleration

Page 55© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Sets of shadow registers can reduce the length of time that an
ISR takes to complete, so that control returns more quickly to
the code that was interrupted. They also help interrupts to be
serviced more quickly -many real-time tasks need to be serviced
quickly.

One fi nal point is why not use banks of registers to speed up
multi-tasking or multi-threaded code? In fact the ARM has a
special banked set of registers for a supervisor mode that is
entered through a software command.

Hardware acceleration

Page 56© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

The UltraSPARC II actually used register windows with each
new procedure being allocated a separate window of fresh
registers. When procedures are nested, the available register
space is not enough, so old windows are stored to memory, and
new windows take their place.

This is a type of cache for registers, and unfortunately it means
there is a penalty for a register window miss (which requires a
wait for the whole set of registers to be loaded from memory
after the set they are replacing is fi rst saved).

Note: The UltraSPARC also has a few global registers that
are always accessible.

Hardware acceleration

Page 57© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

The picoJAVA does not have traditional registers because JAVA
programs do not require access to registers; they operate on a
stack principle - most instructions (bytecodes) assume that operands
are popped from the top of the hardware stack, and the result pushed
back on to the stack.

However problems occur if the two wanted operands are not at the
top of the stack - they have to be moved there fi rst.... Performing
the move wastes instruction cycles.

For this reason, the picoJAVA can also access the current top 64
stack elements as registers. If more than 64 values are popped into
the stack, old entries are retired into a stack cache. This happens
in the background (i.e. It does not waste any CPU cycles).

Hardware acceleration

Page 58© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Hardware Stack

We have considered the use of the stack, but not considered
whether this was implemented in software or hardware.
In fact software stacks are often used - especially for 'C' programs.
JAVA programs also require a stack (but this was implemented in
hardware in the picoJAVA).

Many processors have a small hardware stack that is used to
allow nested function calls. For example, the PIC16C84 has
an 8-level hardware stack. Every time a function call or interrupt
occurs, the PC is pushed on to the stack. To return from the
function (or interrupt), a value is popped from the stack into the PC.

Hardware acceleration

Page 59© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Hardware stack: An 8-level deep hardware PC stack only allows
8 copies of the PC to be pushed. If the processor has a single
interrupt, then 1 stack entry must be reserved for when the interrupt
occurs.

There are thus 7 levels of nested function calls allowed. If too
many calls occur, then the bottom address will be lost: when the
pop occurs later to retrieve that address, an undefi ned value will
be returned to the PC, and the processor will jump to an undefi ned
memory location, causing an error.

In the PIC there are no PUSH and POP mnemonics. These are
implicit in the CALL and RETURN instructions.

Hardware acceleration

Page 60© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Hardware stack: Although a hardware stack is a fast and effi cient
method to implement function calls and returns, it limits the number
of nested functions. In such a system, recursive calls can not be
made.

The ADSP2181 actually has 4 hardware stacks. One is the 16-
level PC stack, and the other three are loop, status and counts.

The loop stack allows 4 nested loops (i.e. do-while) to be performed
in hardware, whilst the count stack allows another 4 nested count-
based loops (i.e. For-next) to be accommodated in hardware.

The status stack allows interrupts to be nested in a similar way to
the shadow status registers of the ARM. In the ARM there are
dedicated shadow status registers, but the ADSP has an n-level
status stack, where n is the number of possible interrupt sources.

Hardware acceleration

Page 61© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Branch Prediction

Pipelined CPUs in general suffer from three major issues:

1. Interrupt response can be poor

RISC processors signifi cantly improve on interrupt response
over their CISC predecessors, but with longer pipelines,
interrupt response worsens.

2. Code dependencies limit performance

We will look at this more – consider the implications for both
machine architecture and compiler design!

3. They are only good for continuous code

Short programs, and lots of branching reduce pipeline effi ciency.

Page 62© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Branch Prediction

Branching causes problems:

i1: ADD R1, R2, R3
i2: B loop1
i3: ADD R0, R2, R3
i4: AND R4, R2, R3
i5: loop1 STR R1, locationA

Clock cycle: 1 2 3 4 5 6
Fetch i1 i2 i3 i5
Decode i1 i2 X I5
Execute i1 i2 X i5
Save i1 i2 X

By the time we decode i2 and discover it's a branch, we've already
incorrectly fetched i3.

So we have to immediately stall the pipeline until we fetch i5 instead.

Page 63© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Branching can cause even worse problems:

In most RISC processors the branch target address is stored as a
relative offset from the current address.
Thus in assembler, i2 above would be encoded as “B +3”

Before the branch can be taken, the absolute target address needs to
be calculated first:

PC <- PC + offset

i1: ADD R1, R2, R3
i2: B loop1
i3: ADD R0, R2, R3
i4: AND R4, R2, R3
i5: loop1 STR R1, locationA

Branch Prediction

Page 64© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

In many processors, the branch target address calculation is performed
using the main ALU. Higher performance processors might have a dedicated
address ALU for this. Let's look at the normal situation:

i1: ADD R1, R2, R3
i2: B loop1
i3: ADD R0, R2, R3
i4: AND R4, R2, R3
i5: loop1 STR R1, locationA

Clock cycle: 1 2 3 4 5 6
F & D i1 i2 X i5
E (ALU) i1 i2 X -
E (MUL) - - X -
E (MEM) - - X i5
S i1 - X i5

3 stage scalar
pipeline F – E – S

Branching causes X, a pipeline stall

Note: even though i2 uses
the ALU, the result does
not need to be saved (it is
not going to a register).
Instead, it is forwarded
directly to the fetch unit.

Branch Prediction

Page 65© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Branch Prediction

Clk cycle: 1 2 3 4 5 6 7 8
F i1 i2 i3 S i5
D i1 i2 i3 S i5
E (ALU) i1 i2 S S -
E (MUL) - - S S -
E (MEM) - - S S i5
S i1 - S S i5

Conditional Branching causes even more dependencies

i1: ADDS R1, R2, R3
i2: BEZ loop1
i3: ADD R0, R2, R3
i4: AND R4, R2, R3
i5: loop1 STR R1, locationA

4 stage scalar
pipeline F – D – E – S

The branch needs to know if the condition is fulfilled before it can be taken
(as well as waiting for a branch address calculation). Here it will sit and
wait (Stall) until it knows:

Clk cycle: 1 2 3 4 5 6 7 8
F i1 i2 i3 S i4 i5
D i1 i2 i3 S i4 i5
E (ALU) i1 i2 i3 S i4 -
E (MUL) - - - S - -
E (MEM) - - - S - i5
S i1 - i3 S i4

BRANCH TAKEN BRANCH NOT TAKEN

Page 66© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

What can be done to reduce the branch penalty

1. Make all instructions conditional (ARM)

2. Separate condition setting and conditional

3. Pre-calculate branch target address

4. Use a delayed branch (MIPS, TMS320C5x etc...)

5. Allow speculative execution

Refer to the text for more explanation of these!

Branch Prediction

Page 67© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Parallel Machines

We will look at parallel machines later, but actually there are
several levels of parallelism that can be considered in computers,
since the term “parallel machines” is very loosely de� ned:

Bit-level parallelism relates to the size of word that a computer
processes. An 8-bit computer processes eight bits in parallel, but
four times as much data can potentially be handled in a 32-bit CPU.

Instruction level parallelism. As we have seen in many cases,
different instructions can be overlapped and processed simultaneously,
providing we take care of any dependencies between them. Pipelining is
a simple example, but superscalar machines, also co-processors and
Tomasulo’s Algorithm.

Vector parallelism relates to SIMD machines that process not just
single words of data, but entire vectors at one time. SSE and MMX
are examples of this type of parallelism.

Task parallelism means that entire tasks, or program subroutines
and functions, can be executed simultaneously by different hardware.

Page 68© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Scheduling in hardware

One of the best examples of scheduling in hardware is
Tomasulo's Algorithm

Although this is ~40 years old (IBM 360/Model 91), it's much more
interesting than most of the modern examples!

Apart from that, it can yield the highest possible performance of a
hardware scheduler, since it allows out-of-order execution and
out-of-order completion.

Tomasulo's Algorithm

Page 69© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

reservation
stations

Load/Store
unit

Memory
unit

reservation
stations

Integer
unit

reservation
stations

FP ALU
unit

reservation
stations

FP Mul
unit

Integer

registers

FP

registers

Instruction
queue

Common Data Bus (CDB)

Scheduling in hardware

The pipelined functional units
can be used independently,
but take different lengths
of time to complete.

The instruction queue is fed
from main memory.

The common data bus conveys
completed results

The reservaton stations hold
instructions waiting for space
in the functional units and maybe
waiting for their operands too.

Tomasulo's Algorithm

Page 70© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

reservation
stations

Load/Store
unit

Memory
unit

reservation
stations

Integer
unit

reservation
stations

FP ALU
unit

reservation
stations

FP Mul
unit

Integer
registers

FP
registers

Instruction
queue

Common Data Bus (CDB)

Scheduling in hardware

ISSUE

Instructions in the queue are issued
in-order to the relevant RS when they
become free.

Inside the RS, the operands are co-
located with the instruction. These
are either real (i.e. they came from a
register) or virtual (i.e. are waiting
for a previous result), and this is
decided when the instruction is
issued.

If the required RS is not free, the instruction queue stalls.

Tomasulo's Algorithm

Page 71© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

reservation
stations

Load/Store
unit

Memory
unit

reservation
stations

Integer
unit

reservation
stations

FP ALU
unit

reservation
stations

FP Mul
unit

Integer
registers

FP
registers

Instruction
queue

Common Data Bus (CDB)

Scheduling in hardware

EXECUTE

The RS will feed instructions to the
functional units with all the operands
are available and the functional unit
is free.

Instructions with real operands are
immediately ready to be executed.

For instructions with virtual operands,
the RS must look on the CDB until it
fi nds the correct value (the result of a
previous calculation).

Tomasulo's Algorithm

Page 72© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

reservation
stations

Load/Store
unit

Memory
unit

reservation
stations

Integer
unit

reservation
stations

FP ALU
unit

reservation
stations

FP Mul
unit

Integer
registers

FP
registers

Instruction
queue

Common Data Bus (CDB)

Scheduling in hardware

COMPLETION

Results are written back to the
register bank, and to any waiting
RSs using the CDB (memory writes
are written to memory).

Tomasulo's Algorithm

Page 73© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Scheduling in hardware

In Tomasulo, the instructions are issued sequentially to the RSs, so mode
changes, interrupts and so on happen as in a statically pipelined machine.

The use of virtual values (i.e. operands waiting for a result) allows
instructions to be issued to RSs which would block a normal pipeline.

Multiple-slot RSs are used to collect all information required by an
instruction, then execute as soon as all the information is there:
opcode + operands.

This resolves both structural and data dependencies...

Tomasulo's Algorithm

Page 74© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

VLIW/EPIC

Conclusion

There are lots of ways to make a faster CPU apart from just
increasing the clock speed. We can do more per clock cycle
with more powerful instructions, allowing >1 instruction to execute
in parallel. We can also overlap instructions in a pipeline – and if
so can take some special actions to make the pipeline faster and
more effi cient (including branch prediction, delayed branches etc...)

We can also create specialised co-processors for data handling,
but also handle instructions faster, and code structures like loops,
addressing modes, conditional instructions and register handling
for both normal code and for interrupt service routines.

New CPU designers have many options, and a lot of fl exibility!

