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Before we can talk to the real (analogue) world, we need to
explore how a CPU device can connect to the other internal
units inside a computer.

The diagram below shows a PC (x86) from the late 1990s:

Bus interfacing

L2 cache CPU PCI bridge
main

memory

SCSI

mouse keyboard

PCI Bus

in
cr

ea
si

ng
 b

an
dw

id
thgraphics

card
PCI
slots

ISA
bridge

USB

ISA
slots

IDE
interfaces

ISA Bus

memory bus

North
Bridge

South
Bridge



 

Page 4© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

 

We can redraw this a little and show how things are evolving
starting from a very basic computer design of maybe 30 years ago:

Bus interfacing
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The one bus means a bottleneck (especially when “Everything Else”
contains some slow devices)!  So we decouple the slow stuff:
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Bus interfacing

In actual fact, it's not just fast or slow, there are several speed
levels, so we need to layer more carefully, and use a cache to
speed up memory access:

But there is more we can do... and as graphics became more
important, the graphics chips became faster and faster...
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Bus interfacing

With fast graphics, the North Bridge and South Bridge became
smart (and now have different names!)
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Embedded systems are very similar to what we saw, except:

1. They tend to be a little slower (for reasons of power).

2. Everything will be on a single chip (especially for SoC).

3. Different bus types, instead of AGP, PCI, we might have
AMBA: advanced microcontroller bus architecture
AHB: ARM host bus
APB: ARM peripheral bus
AXI: no full name was given by ARM but we can guess...

AMBA eXtension Interface?
ARM's eXtreme Interface?

4. Often no hard disc – we prefer fl ash memory in embedded 
systems! We also have more built-in peripherals.

5. No MCH, ICH, North Bridge or South Bridge terminology – in
embedded systems we design smaller and simpler bridges.

Bus interfacing
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Bus interfacing

So many types of parallel bus!!!
How can I ever learn about so many?

The good news is that, at least for basic operation, 
they are all pretty much the same.

So let's look at the typical control signals and methods.
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A parallel bus normally has three components:

Data

Address

Control

Data can be read or written on the Data bus, and it's the Master 
(the CPU is almost always the master), that decides when to write 
and when to read.

The Master uses the Control bus to tell the Slave what to do.

If the Slave contains different items of information, the Address
bus is used by the Master to tell the Slave exactly which item it
wants to read from or write to.

Bus interfacing

Master Slave
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The buses have different widths:

Data

Address

Control

The width of the bus determines how much data (how many bits)
get transferred in each bus cycle. 

In fact the buses are comprised of individual wires connecting
individual pins, such as D[0], D[1]... D[7] for an 8-bit data bus,
or A[0], A[1], A[2]...A[9] for a 10-bit address bus.

A 10 bit address bus can select 210 locations = 1 kibyte, although
there are ways to expand this (e.g. DRAM; see page 319).

Bus interfacing

Master Slave
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10
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Remember, in parallel buses, each data bit is transmitted on a 
separate wire. These are usually 8, 16 or 32 bits wide.

A bus is a common method to exchange information.  Different
devices can read and write to a bus at different times, but only one
device (the master) should write at any instant (drive the bus).  

As mentioned, a CPU is usually the master. Otherwise a separate 
bus arbiter can be used to control the bus.

Driving the bus pulls the wires high or low, reading the bus 
measures the wire voltage.  Devices which are not driving the 
bus need to be in a high impedance state (high-Z).  These are 
not affecting the bus in any way, allowing it to be driven by 
other devices.

Bus interfacing
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When a voltage is applied to a wire, there is a short delay before
the entire wire reaches the same voltage, due to its inherent
capacitance.  This means that once a bus is driven, there is a 
set-up time needed before any devices can read that bus.

Peripheral devices also need the bus state to remain static for a 
short time while they read the bus.  This is the hold time.  
These two constraints limit bus cycle speed.

A faster bus needs a lower capacitance (or the devices which 
drive it must be able to source/sink more current so that the 
bus charges up quicker).

Bus interfacing
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In fact, the equivalent circuit of a bus
contains a capacitor and an inductor for
each line.  The capacitance is increased
where there are long buses with many closely-spaced wires, or where
there are ground-planes.  Capacitance increases the time required to
assert a voltage on the bus.

The inductance is caused by closely-spaced wires or convoluted PCB
tracks (mutual inductance).  This can cause voltage overshoot or
voltage refl ections.

Everything depends on the length and layout of the bus, and the 
driving circuitry.  It limits the speed at which the bus can reliably 
transmit data.

Bus interfacing
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Here is timing diagram for a synchronous bus:

1. a device starts to assert data on the bus
2. the data on the bus has stabilised and can be used
3. the device starts to de-assert the data it is driving
4. bus is now being driven by another device

1 2 3 4

valid data

Think about these questions:
Q. What is on the bus before position 1, and after position 4?
Q. What voltage is on the bus between 1 and 2? 
Q. What is happening between 3 and 4?

Bus interfacing
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A bus controller must tell a device reading from the bus when data is 
ready, and that data must remain until the device has fi nished reading
it.  This can be through timing, or through a signal from the device to
the controller.  For a device writing to the bus, the sequence is similar;

valid data

device can write
data to bus

device signals
data stable

signal to device
to hold data
on the bus

signal from bus controller

signal from device

from bus controller
Ts Tw ThTd

bus

Bus interfacing

Most CPUs these days contain an internal bus control unit.
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We've only considered the data bus so far; but we often need 
an address bus to choose which device is being accessed as 
well as to access devices with multiple internal storage locations 
(such as RAM).  

A possible sequence of events to read from such a peripheral:
1. Controller selects peripheral by placing its address on the address bus
(which is used by an address decoder to select the peripheral and often 
a few address lines are also used to select locations within a peripheral).
2. Controller waits long enough to ensure that the address bus is steady.
3. Controller generates a signal to all peripherals to write (or read).
4. The address-selected peripheral drives its data on to the data bus.
5. (optional the selected peripheral outputs an acknowledge signal).
6. Controller keeps the write signal active until the data bus has been read.
7. Controller fi nally de-asserts the write signal.
8. Peripheral de-asserts the acknowledge, and stops driving the data bus.
9. After a short time (hold-off period), the controller can repeat the process.

Many variants exist to this basic scheme....

Bus interfacing
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valid data

valid address

[active-low signals]

/CS

/RD

When a CPU writes to a peripheral (asserting the read signal), what
happens when that peripheral is too slow to read the data?  Either the
CPU knows it should extend the data validity by adding wait states, or
the peripheral needs to return a bus hold signal to the CPU.

For more on nCS, nRD, nWR, refer to book Section 6.1.1 page 253.

/WR

address
settling

time

data
settling

time

delay for peripheral
to read the data

From CPU

From peripheral

Address decode logic

Bus interfacing
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Some early 8-bit CPUs reduced pin-count by multiplexing address
and data buses.  This reduced the number of pins by 7 (-8 because 
only bus and +1 pin used to indicate whether data or address is 
being carried).

More modern CPUs can still multiplex data buses:  a 16-bit bus can
handle 32-bit data in two transfers per 32-bit word. 

Some CPUs have different address spaces: these can commonly
be data memory, program memory and I/O.  

For example, TMS320C50 shares one 16-bit data bus and one 
16-bit address bus between 3 address spaces.  The address 
spaces are selected by 3 pins:  DS, PS and IS.  
Shared buses are also used in ADSP2181 and x86 designs.

Bus interfacing
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Synchronous buses are those that make state changes 
synchronous to a clock, this means, for example, that wait states 
will be a certain number of clock cycles.  These are easiest to 
control.  Unfortunately the bus speed is limited to the slowest 
device which is connected.

Asynchronous buses use hold and wait signals to control 
transfers, not number of clock cycles. Each transfer period lasts 
as long as necessary, and no longer.  Obviously these have less 
wasted time and are more effi cient, but are more diffi cult to control.

Synchronous buses include:  ISA, EISA (both 8.33MHz), PCI (33MHz
or 66MHz), SCSI (5 to 20MHz), AMBA etc...

Few asynchronous buses are used in normal architectures.

Bus interfacing
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Bus bandwidth calculation:

The PCI bus available in most PCs is a 32-bit wide bus that runs
at 33MHz, so bus bandwidth is 4 bytes×33=132MBytes/second.

In workstations, PCI can be 64-bits wide and run at 66MHz,
giving 8 bytes×66=528MBytes/second.

However these calculations assume no overheads for addressing,
control information, and possible slow peripherals requiring
wait states.  They are theoretical maximums.

For an 8-bit multiplexed data/address bus running at 8MHz, bus
bandwidth might be 1 byte×8MHz/2 = 4MBytes/second.

Bus interfacing
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Two main approaches are taken to I/O: the fi rst is to memory-map
I/O ports.  This means that an external address decoder on a shared
address bus will drive I/O latches.  Writes/ready to memory within the
range encompassed by the address decoder will perform I/O reading
and writing (an example TMS320C50 I/O port interface):

8
/CS

R/W

/IS

Data[0:7]

A0
A1
A2
A3

IO[0:7]

latch, e.g.
74AC245

R/W is high or low depending
if a read or write is wanted.
When the address bus has
the correct address, the /CS
signal becomes active.  Soon
after, the /IS signal is driven
low to indicate that an I/O
read or write should occur.

This circuit displays partial
address decoding...

Bus interfacing

address
decoder
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DMA (Direct Memory Access):

The bus controller (CPU) will relinquish control of a bus to
allow peripheral devices to communicate directly without the
overhead of CPU intervention, and also allow the CPU to
continue other tasks during the DMA transfer.

A DMA device issues a bus request, and is given a bus grant
signal by the CPU in order to begin DMA transfer.

The parameters of the transfer are usually set up in software
by the CPU.

Bus interfacing
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Bus interfacing

HCLK

A[24:0]

nGCS

nOE

nWE

D[31:0]

D[31:0]w
rit

in
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g

Tacs Tcos Tacc Tacp Tcoh Tcah

Consider the following memory bus diagram for the Samsung S3C2410 ARM:

Refer to book section 6.2, page 255 for a detailed explanation of the 
read and write transactions shown, plus the meanings and timing 
specifi cations of each of the control signals.
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Serial buses use fewer device pins than parallel buses,and can
therefore reduce pin-count.  They also consume less power, so 
better are for battery-powered systems.

Serial buses can also be synchronous or asynchronous; PC
serial ports cater for asynchronous transmission.  Serial bus
standards for audio (such as I2S and S/PDIF are synchronous).

USB and fi rewire are examples of modern serial buses...

Question to consider: Why are serial buses so popular and 
what further advantages do they have over parallel buses?
Do they have any disadvantages?

Bus interfacing



 

Page 25© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

 

Bus interfacing

Another connectivity approach usual on micro-controllers such 
as PIC, MSP, H8S and some DSP processors like the ADSP2181, 
is to provide a few general purpose I/O pins on the CPU package.  
These are addressed directly by specialised instructions. e.g.

SET FL1 ;on ADSP2181, this sets pin FL1 high
or
BSF PORTA,0 ;on PIC, this sets bit 0 of I/O port A high

Since these are controlled through on-chip registers, reading and 
writing to them is quick; there is no need to assert an address on 
the address bus, wait for it to settle etc.... They also reduce the 
chip count and reduce power consumption.

These GPIO pins also allow us (if we have enough of them) to
write software to implement almost any bus standard. For example,
if we don't have a built-in SPI controller on our CPU, we can write
a small SPI program that controls a few pins to act as an SPI bus.
For serial protocols, this is called bit-banging.
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There is much more to the topic of bus interfacing – for something
that sounds simple, it can become quite complex!

Refer to chapter 6 in the book for details of many specifi c system
buses that can be commonly found in today's embedded devices.

Bus interfacing
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Real-time issues

Many embedded systems are also real-time systems.... but what 
is real-time?
“any information processing activity or system which has to respond to 
externally generated input stimuli within a finite and specified period”

Burns & Wellings Real-Time Systems & Programming Languages

Basically, systems that need to meet some deadlines.  These 
can be classifi ed as either hard or soft:

hard these deadlines must be met otherwise the 
system will fail

soft these deadlines should be met but the 
occasional miss can be tolerated

Some deadlines have both soft and hard real-time limits
(eg. response should be < 10ms but must be < 500ms)...
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Real-time issues

Real-time systems are often multitasking systems – these switch
between processing tasks as required. Tasks also respond to 
external events (which notify the CPU through interrupts), or
switch based on hardware timers or various software 'events'.

The hardware needs to be able to support the different tasks – this
can have implications on hardware stack, memory management,
and some advanced features such as hyperthreading support.

Tasks

time

1
2
3
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Interrupts are the main means by which external devices inform the
CPU of a change in state.  The alternative is to use device polling,
where the CPU repeatedly and periodically interrogates each external
device.

Polling wastes CPU bandwidth because it usually returns a negative
result, and also increases the maximum response time of the CPU
(which would be equal to the polling period).  It also makes software
more complicated.

Interrupts are ideal for devices that require fast CPU intervention, or
devices that change state only very infrequently.  Devices that issue
interrupts can reside anywhere, on any bus, serial or parallel, 
synchronous or asynchronous, because the interrupt is an 
asynchronous input.

Interrupts
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Interrupts B __start
NOP //undaefi ned instruction
NOP //software interrupt
NOP //prefetch abort
NOP //data abort
NOP //not used
B IRQ //IRQ
NOP //FIQ

__start
ADD R0, R0, R1
SUBS B3, R6, R9
BEQ handler

begin
MOV R4, #0x1000
MPY R4, R6, R4
LDR R2, R3, [R0, ASL #2]
NOT R2, R2
ADDS R4, R4, R2
AND R4, R4, R3

handler
SUB R1, R4, R3
SUB R2, R4, R2
ADDS R4, R4, R2
BGT begin
B handler end

start

ISR1
LDR R0, [#adc_in1]
MOV R1, #0x1000
AND R2, R1, R0
STR R2, [#dac_out1]
MOV PC, R14

An example interrupt
(see page 274)...

Some code is executing,
and then an interrupt just
happens to occur during
the fi rst SUB instruction,
and is serviced immediately.
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Although interrupts are asynchronous, most CPUs respond in a
synchronous fashion by;
1. fi nishing the current instruction
2. saving the PC
3. setting the PC to equal a known memory address (a vector)

These locations in memory are known as interrupt vectors, and 
there will usually be one special address for every interrupt that 
can occur, such as the following for the ADSP2181;

0x0000 RESET, or startup from powerdown
0x0004 IRQ2 pin activated
0x0008 host write interrupt
0x000C host read interrupt
0x0010 serial port 0 transmit interrupt
... and every 4 locations up to 
0x002C powerdown condition

Interrupts
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Since there are only 4 address locations reserved for each interrupt
vector, this is not usually enough space for a complete interrupt
service routine (ISR), so these locations normally contain a CALL
to the appropriate ISR which is located elsewhere in memory.

Location 0x0000, the startup vector, normally contains a jump to
main(), or to __start (a typical starting label in most assemblers).

Some of the vectors are caused by a signal on an interrupt pin
(e.g. the IRQ2 pin going low), others by internal signals
(e.g. the internal serial port transmit buffer emptying).

Some interrupts can be turned off or masked under software 
control and some can not: the latter are non-maskable interrupts 
(NMI).

Interrupts
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Interrupts are usually prioritised, and on some CPUs, a higher 
priority interrupt can occur during the ISR of a lower priority 
interrupt (but usually on smaller CPUs all other interrupts are
blocked during ISR execution).

The ADSP2181 interrupt priorities are (highest at the top);
RESET or startup from powerdown
powerdown
IRQ2 pin
host write
host read
serial port 0 transmit
serial port 0 receive
software interrupt 1
software interrupt 2
serial port 1 transmit, or IRQ1
serial port 1 receive, or IRQ0
timer interrupt

Interrupts
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Interrupt timing:  For fast peripherals, or real-time systems, it is
often necessary to know how long it will take an ISR to respond to
an interrupt condition.  For this there is a best case and a 
worst case.

Worst case will probably be the occurrence of a lower-priority
interrupt that fi rst has to wait for a multi-cycle instruction to 
complete and then has to wait for a higher priority interrupt to occur.

Worked example:
A 20MHz CPU has a CISC instruction set:  the slowest instruction is
a DIVide that takes 100 cycles to complete.  It has two interrupt pins
called IRQ1 and IRQ2, with IRQ1 being highest priority.  The ISR for
interrupt 1 can take up to 30 cycles to complete.  There is a shadow
register set for interrupts.  How long is worst case for the CPU to
respond to IRQ2 (assume no overhead for interrupt vectors)?

Interrupts
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Before any ISR can be called, the current instruction must fi nish.  
In the worst case, the current instruction is the DIVide (just started). 
So time for divide to fi nish is 50ns×100=5� s.

In addition, the worst case would be that IRQ1 and IRQ2 occur 
together, so we would have to wait for this higher priority interrupt 
(IRQ1) to fi nish fi rst.  This would take 50ns×30=1.5� s.

This gives a total response time of 6.5� s.  So the fastest peripheral 
that could be connected is one that interrupts less frequently that 
that, i.e. less than about 150kHz.

Interrupts



 

Page 36© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

 

Some smaller CPUs and microcontrollers tend to share interrupt
vectors between a number of different sources.  In this case, the
ISR fi rst has to decide which interrupt actually occurred, by
reading an interrupt status register, further lengthening the
response time.

Interrupts can be edge-triggered or level-triggered (some CPUs
such as the ADSP2181 allow both options).  

Edge triggered signals are latched internally as soon as they occur.  
Level triggered signals usually have to be active for a number of 
clock cycles before they are latched internally. 

This is a type of debounce on the interrupt input, which also 
means further delay before the interrupt is serviced.

Interrupts
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Worked example 2:  The ARM has 2 external interrupt sources; the
standard interrupt (IRQ) and the fast interrupt (FIQ), with the FIQ having
higher priority.  The shadow register sets provide 6 usable shadow
registers for the FIQ and only 1 for the IRQ (assume we need to use 4
registers, and each register load to/from memory takes 2 cycles)

The IRQ interrupt vector is midway in the interrupt vector table, whereas
the FIQ vector is at the end (this means that no jump is needed for FIQ
from the vector table: the interrupt code can simply follow from this
location).

The longest instruction on the ARM7 is a multiple load of 16 registers
from sequential memory locations, taking 20 clock cycles.  It can take
up to 3 cycles to latch an interrupt.  Assume that two cycles are needed
for every branch.  There is one interrupt with higher priority than both
FIQ and IRQ.  Assume that this takes 25 cycles to complete.

Interrupts
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We want to choose between FIQ and IRQ.  How many cycles would
each interrupt take (assuming there is only one external interrupt)?

IRQ worst case response time:
1. No. cycles taken to respond to interrupt:

to latch external signal 3
to fi nish the slowest instruction 20
to fi rst service higher priority interrupt 25

2. No. cycles need to reach start of ISR:
to jump to the IRQ interrupt vector 2
to jump from there to the ISR 2

3. No. cycles at start of ISR before a response can be made:
to context save 3 registers (3×2) 6

Total required before ISR can start: 58

Interrupts


