

Page 1© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Computer Architecture
An embedded approach

Module 8

CPU Design
(the DIY approach)

Page 2© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

8.1 Soft core processors

8.2 Tiny CPU

8.3 Hardware/software co-design

Contents

Page 3© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Soft core processors

Chapter 7 discussed the practicalities of real CPU ICs, namely the
very common System-on-Chip approach that encompasses almost
all microcontrollers, embedded CPUs and is beginning to be found
in larger netbook and laptop processors (and which will, presumably
also fi nd its way to desktop processors in time).

So, for example, while there is only one actual ARM7 core design,
there are several variants and literally hundreds of different CPUs
based upon that core. Each of these different device families and
individual devices has its own set of unique features and attributes.

Page 4© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Soft core processors

If you are designing the next iPod or similar mass-market product,
it is entirely possible that an SoC manufacturer such as Samsung
would take your list of desired features and design the hardware
for a new device based around this.

But smaller manufacturers do not have that luxury: we don't sell
enough products for these companies to design a new IC
specifi cally for us... we are expected to use one of the existing
designs.

Luckily, for the ARM at least, there are thousands of choices.

However there is another approach – we can build our own!

Page 5© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Soft core processors

Building our own silicon may not be cost-effective, but we could
create a computer design on FPGA (Field Programmable Gate
Array) that exactly meets our needs.

If the FPGA (which is relatively expensive in quantity) works fi ne
then we can later create a semi-custom ASIC – our own IC – using
the design.

This would be cost-effective for medium quantities (small quantities
would be better served by FPGAs and larger quantities by ASICs).

We will not argue the case for ASICs of either variety here, simply
discuss how we might use one to implement our own CPU and
required set of peripherals.

Page 6© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Soft core processors

So assume we need to implement some functions...

•We could code these into an FPGA

•We could write them as software on a standard CPU

•We could build our own CPU (and then write software for it)

•Any combination of the above

Page 7© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

FPGA

Functions to be
implemented

CPU

FPGA

FPGA

Soft core processors

The first tasks are usually deciding
what functions need to be
implemented, what type of CPU to
use (our own/standard one) and
what FPGA device to squeeze all of
these into (if it is to contain the CPU).

There may be some 'trading' of
requirements between different
methods of implementation,
depending on the resources
available.

There are also many other factors
not mentioned here (speed, cost,
end-of-life issues, availability,
power, expandability, interfaces...
these are just a few).

Page 8© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

FPGA

CPU

I/O
interfaces

Soft core processors

Finally, in the picture below, we see that all of the required functions
have fi tted into the FPGA, creating our own custom SoC device.

As you might have guessed, we have skipped a few stages – one of the
most important is the unit testing phases, plus verifi cation and validation
(which we will meet again in a while).

Page 9© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

ARM
interface

FPGA
driver
code

FPGA ARM

Functions to be
implemented

Soft core processors

To be honest, we also have to note that in many cases these days, the
FPGA (which may or may not contain a soft core), is used in conjunction
with an existing processor such as an ARM. The main reason for this
is software: ARM code is easy to develop – there are many tools and a
huge library of existing resources. By comparison, the person designing
his own CPU has to develop everything!

In this case, the previous step would
be to determine the functions that
need to be supported, and attempt
to partition them to either the FPGA,
to the processor or fi nd some other
solution for their provision.

Page 10© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

ARM
interface

FPGA ARM

FPGA
driver
code

When doing the kind of partitioning mentioned on the previous page,
we would often start by defi ning a fi xed interface between the two
devices.

This is something that can often remain static – we simply have to
change the information that passes over that interface depending
upon where the functionality has been allocated.

Of course we must not forget to ensure the interface has suffi cient
bandwidth, control capabilities, and it's data/control latency is not
excessive.

Soft core processors

Page 11© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

System
model

Partitioning

FPGA
code

Interface CPU code

FPGA tools Emulator

verification

verification

verification

Integration verification

Custom computing design fl ow

This approach can be described as a kind of iterative process as shown
below. Note that verifi cation is done between every stage. It is very
very easy for errors to creep in during this process that could be
extremely diffi cult to track down later – so verifi cation is essential!

Page 12© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Custom computing

FPGA

CPU

I/O
interfaces

Of course, if you decide you don't need the power of an entire ARM
CPU, or you want to save cost, or stick with a one-chip solution, then
you need to use a CPU core inside the FPGA:

Each FPGA manufacturer has their own cores (such as Nios-II,
MicroBlaze), and some FPGAs actually contain in-built hard CPUs.

However you might want to design your own. To show how this
approach works, we will develop TinyCPU.

Page 13© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

A fully working CPU, synthesisable in an FPGA

16-bit stack based architecture

Simple but fully functional

Written in Verilog, programmable in assembler (and C)

Highly modifi able, quick to learn

Input and output ports

Extensive range of conditional instructions

What is TinyCPU?

Page 14© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

TinyCPU was designed by Prof. Koji Nakano of Hiroshima University

What is TinyCPU?

It is also used extensively for teaching elsewhere, including at
Nanyang Technological University, Singapore

Page 15© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

in

dbus

 output
 obuf0

d

out

We start with a single-bus architecture - one data bus with I/O

Creating TinyCPU

Page 16© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

in

memory
ram0

addr d q

d qtop

stack
stack0

qnext

abus

dbus

 output
 obuf0

d

out

We start with a single-bus architecture - one data bus with I/O
Then add memory (vonNeumann) and a stack

Creating TinyCPU

Page 17© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

in

alu0

a b

s

 output
 obuf0

d
memory

ram0

addr d q

d qtop

stack
stack0

qnext

abus

dbus

out

We start with a single-bus architecture - one data bus with I/O
Then add memory (vonNeumann) and a stack
Just one functional unit – an ALU (also contains a multiplier)

Creating TinyCPU

Page 18© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

in

 output
 obuf0

d
memory

ram0

addr d q

program counter
pc0

instruction register
ir0d d qq d qtop

stack
stack0

qnext

abus

dbus

out

alu0

a b

s

We start with a single-bus architecture - one data bus with I/O
Then add memory (vonNeumann) and a stack
Just one functional unit – an ALU (also contains a multiplier)
A PC (program counter) and instruction register (IR) come next

Creating TinyCPU

Page 19© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

in

 output
 obuf0

d
memory

ram0

addr d q
controller

state0

program counter
pc0

instruction register
ir0d d qq d qtop

stack
stack0

qnext

abus

dbus

out

alu0

a b

s

We start with a single-bus architecture - one data bus with I/O
Then add memory (vonNeumann) and a stack
Just one functional unit – an ALU (also contains a multiplier)
A PC (program counter) and instruction register (IR) come next
Finally, a centralised state machine controller

Creating TinyCPU

Page 20© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

IDLE
000

FET
CHA
001

EXE
CA
011

FET
CHB
010

EXE
CB
100reset==0

halt==1

run==1

cont==1

state0

Control involves 4 active states:
FETCH_A,
FETCH_B
EXEC_A
EXEC_B (not needed for some instructions)

Creating TinyCPU

Page 21© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

counter.v

counter_tb,v

state.v

state_tb,v

ram.v

ram_tb,v

stack.v

stack_tb,v

alu.v

alu_tb,v

tinycpu_tb.v

tinycpu,vActual Verilog code describing the CPU

Test benches are provided for individual verilog modules, and for overall.

Simulate the CPU
using a testbench

Write program in
TinyCPU assembly

language

Assemble
using

tinyasm.perl

Format
using

mac2mem.perl

Creating TinyCPU

Page 22© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Hardware/software co-design

Moving back to the issue of implementing a set of functions... This is a
very common task for the embedded systems engineer.

FPGA 1

Functions to be
implemented

CPU 1

FPGA 2

FPGA 3

CPU 2 CPU 3

CPU 4

Sometimes we implement a function
or a task as software on a CPU,
sometimes as fi rmware on an FPGA,
sometimes as actual hardware.

But if we design our own CPU, we can customise it to provide exactly
the capabilities we want.

Page 23© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Hardware/software co-design

We can expand or shrink the capabilities of our CPU as required.

Can can add specialised instructions to the instruction set
(just like in a CISC processor!) - or remove unused ones for effi ciency!

My CPU My CPU My CPU My CPU

My CPU My CPU My CPU

Note: we had seen this first in Chapter 5 (see Fig. 5.23 on page 234)

Page 24© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Hardware/software co-design

Hardware/software co-design can be, at best, is a way of jointly
optimising a system... juggling the hardware capabilities and software
programs through a number of alternatives (relatively quickly) to
choose a working system with lowest cost/power/size (you choose
one of these – the smallest may not be the cheapest or the lowest
power!).

Of course, all this depends on how good the tools are that you use!

More research is defi nitely still needed in this area.

Page 25© 2011 Dr I. V. McLoughlin Computer Architecture: an embedded approach

Conclusion

This chapter is not one found in many (or any?) other computer
architecture textbooks. The world is becoming an exciting place
for embedded system developers who can now harness the growing
power of FPGAs to implement their own CPUs.

We have explored TinyCPU, a very small Verilog processor that we
can build into an FPGA and extend (full steps for this are given in the
textbook, and a set of laboratory sessions which explore this process
are available as supplementary material).

Finally, the fl exibility we have to choose different solutions for hardware
and software has given rise to a set of development tools that allow us
to explore many potential options with the aim of choosing the best one
for our design criteria.

