

Introduction to Verilog
and ModelSim

(Part 1 - Background)

Overall Content

● Part 1 – Background
● Part 2 – Verilog Basics
● Part 3 – Running ModelSim
● Part 4 – Combinational Logic
● Part 5 – Sequential Logic

Scope and Objective

● Verilog language standards
– Mainly Verilog95 (some Verilog2001)

– Focusing on synthesizable constructs

● ModelSim as simulation tool
– Other tools can be used

– Focus on getting familiar with Verilog

● Introductory level design
– Basic design flow (i.e. entry, checking, simulate)

– Basic implementation

Computer Aided Design

● CAD tools (software) used in various fields
● Common CAD-based design flow:

– Design entry (input)

– Design check (optional)

– Design simulation/synthesis (process)

● End result (output) can be either used for
analysis or further processing (e.g. fabrication)

● May consist multiple stages of similar structure

Design Entry (Electronics)

● Representation of a design
● Classic design entry methods:

– Graphical - Schematic Capture

– Text – Netlist, Hardware Description Language (HDL)

● Not-so-classic method:
– abstract representation (e.g. state diagrams)

● Many digital systems design work involves using
HDL (schematics still used for simple systems)

Hardware Description Language

● HDL coding… not programming!
– Encoding a system in text form

– May describe structure, function or behavior

● Mostly used HDL:
– VHDL (VHSIC HDL)

– Verilog HDL

● Most industry-standard tools supports both
VHDL and Verilog

VHDL and/or Verilog

● VHDL
– strongly typed, verbose

– efficient at representing a design

● Verilog
– C-like standard, relatively simple

– easier for entry-level engineers

● Both has its strength/weaknesses
– Some uses both! We choose Verilog (… go figure!)

Good for system
level integration

Good for
simulation work

case in-sensitive

case sensitive

HDL Approaches

● Mainly, 3 styles of HDL coding:
– Structural – netlist format (specify exact electrical

lines) → Absolutely synthesizable

– RTL – functionality of the system (usually in digital
logic form) → Should be synthesizable but may not
be optimized

– Behavioral – usually abstract behavior of the
system (e.g. black box) → Most of the time NOT
synthesizable (i.e. for simulation only)

Register Transfer Level (RTL)

● Any digital systems can be built from logic gates
(combinational) and flip-flops (sequential)

● Some tools can generate RTL codes from other
advanced forms of graphical entry (e.g. flow
charts, truth table, state diagrams)

● For most people, RTL codes are synthesizable
codes

Combinational
Logic

Sequential
Logic

Design Simulation

● Many simulation tools for Verilog-based design
– Icarus Verilog (http://iverilog.icarus.com)

● A commonly used simulation tool is ModelSim
– Complete design environment by Mentor Graphics

– Code Editor, Simulator, Waveform viewer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

