

Introduction to Verilog
and ModelSim

(Part 2 – Verilog Basics)

Basic Verilog Construct

● Verilog code starts with a module definition

– test is the name (label) of the module

– paramA and paramB are interface ports

– notice the semi-colon after parameter list

– must end with endmodule keyword

● Also, notice C99/C++-style comments

module test (paramA, paramB);
// codes go here
endmodule

Verilog Module

● Example of full module declaration
– original Verilog-95 standard

● All parameters must be assigned a direction
– input, output OR inout

– some tools require tri-state representation of inout

module invert (paramA, paramB);
input paramA;
output paramB;
// code here
endmodule

Verilog Module (cont.)

● If using Verilog 2001 standard
– input/output can be done inside parentheses

– looks nicer if arranged this way...

module invert (input paramA, output paramB);
// code here
endmodule

module invert
(

input paramA,
output paramB

);
// code here
endmodule

FYI ONLY!

Verilog: Wire/Reg

● Driven signals (incl. output) needs type:
– wire :

● physical connection that is continuously updated
● keyword used with assign statement

– reg :
● signal that is assigned a value under given conditions

(usually used to represent latched signal)
● keyword used with always block

Verilog Example: Wire

● Describing simple logic AND
module logic_and (paramA, paramB, paramC);
input paramA, paramB;
output paramC;
wire paramC;
assign paramC = paramA & paramB;
endmodule

Verilog Example: Reg

● Describing simple logic AND
module logic_and (paramA, paramB, paramC);
input paramA, paramB;
output paramC;
reg paramC;
always @ (paramA or paramB)
begin

paramC = paramA & paramB;
end
endmodule

Verilog Operators

● Three basic bitwise operators (gates)
– ~ (bitwise invert – unary operator)

– & (bitwise and – binary operator)

– | (bitwise or – binary operator)

● Bitwise XOR is also frequently used
– ^ (bitwise XOR binary operator)

● Many more operators but these are the basics
– The rest can be built from these

Verilog: Numbers (LATER!)

● Can be represented as:
– Base-N (binary, octal, hex, decimal)

● integer A = 4'b1010; B = 4'o13; C = 8'h55; D = 7'd101;

– Integers
● integer A = 9;

– Real (floating point) numbers
● real A = 12.345;

● Usually used for numerical processing
– Much easier than structurally built block

Your First Verilog Module

● Create a work path – no whitespace(s)!
– e.g. c:\users\public\modelsim\<your-name>

● Type the following code
– save as logic_and2.v in your work path

module logic_and2 (inputA, inputB, outputC);
input inputA, inputB;
output outputC;
reg outputC;
always @ (inputA or inputB)
begin

outputC = inputA & inputB;
end
endmodule

Testbench

● An environment for a Design Under Test (DUT)
– Generates stimuli (input signals going into)

– Monitors response (output signals coming out)

● Used to verify the functionality of DUT
– Basically, MUST consider ALL possible input range

– Creating a testbench is part of the design flow

No interface
ports needed!

Your First Testbench

● Type the following code
– save as logic_and2_tb.v in your work path

module logic_and2_tb ();
reg driveA, driveB;
wire monitorC;
integer loop;
initial
begin

for (loop=0;loop<4;loop=loop+1)
begin

{driveA,driveB} = loop;
#10;

end
end
logic_and2 mygate (driveA, driveB, monitorC);
endmodule

{ } is symbol for
concatenation

Delay – depends
on timescale

initial block
executed only

once

Practical Session 2.1

● Implement a Verilog module
– The required logic will be decided by your instructor

● Create a suitable testbench for the module
– How many cycles required by the loop?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

