
1PGT302 – Embedded Software Technology

PGT302 – Embedded Software
Technology

2PGT302 – Embedded Software Technology

PART 3

Bare-metal Programming

3PGT302 – Embedded Software Technology

Objectives for Part 3

• Need to DISCUSS and ANALYZE the
following topics:
– Bare-metal programming

– Infinite loop (control loop)

– Event triggered (interrupt controlled)
– Time-slice @ round robin (cooperative multitask)

• Need to ANALYZE some examples
(implementation) in assembly and C

• Need to DEVELOP some simple C codes

4PGT302 – Embedded Software Technology

Embedded Systems Characteristics

• Require minimal user input
– Simple user interface
– Not programmable by end users

• Do specific task (known input patterns)
– Respond to real-time @ predicted/expected

events
– Known set of inputs

• Provide only expected output
– Error tolerant (must output something)

5PGT302 – Embedded Software Technology

Embedded System Implementations

• Does not need the fastest processing unit
– Real-time is knowing when to react!

• Most popular processing unit is
microcontroller
– Programmable, self-sufficient microprocessor
– Multiple reprogramming with flash

• Programmable device like FPGA offers
dynamic hardware reconfiguration
(reconfigurable computing)

• Deciding factor: more features at lower cost

6PGT302 – Embedded Software Technology

Embedded Systems Implementation

• Specifications-based design decisions
– Performance or cost?
– Power requirements

• Contemporary design decisions
– Microprocessor/microcontroller selection

• Legacy processing or reconfigurable computing

– OS kernel or ‘bare-metal’ code

– Assembly or high-level programming

7PGT302 – Embedded Software Technology

Bare-metal Programming

• Creating bare-metal codes
– code that runs on hardware without any OS
– low-level hardware access

• Simple/common application
– single task, single threaded
– using (100%) assembly is still possible
– using C is sometimes an overkill (still.. it works)

• May implement multi-tasking
– static scheduling

8PGT302 – Embedded Software Technology

Bare-metal Programming (cont.)

• Basic code structure
– Simple control (do only one task... for now)

• No complex algorithm
• Most probably single input, single output

– Do it indefinitely (loop!)

• Examples for discussion
– Lighthouse control
– Traffic light control
– Pedestrian light control

9PGT302 – Embedded Software Technology

Infinite Loop

Do stuff

Do stuff

True

Non-structured flow
(not in C unless using goto) Structured flow

10PGT302 – Embedded Software Technology

Simple Implementation (8051)

; gtuc51x001 i/o board
led0 bit 0B4h ; P3.4

cseg at 0000h
jmp init

; skip interrupt vector table!
cseg at 0040h

init:
here:

cpl led0
mov r1,#255

loop:
mov r0,#255
djnz r0,$
djnz r1,loop
jmp here

end

__sbit __at (0xB5) led0; /* P3.5 */

void main()
{
 unsigned char r0, r1;
 while(1)
 {
 led0 = !led0;
 for(r1=0;r1<255;r1++) {
 for(r0=0;r0<255;r0++) {} }
 }
}

Assembly C

Infinite Loop

11PGT302 – Embedded Software Technology

Infinite Loop (cont.)

• Analysis of given simple implementation to
blink an LED on 8051:
– Assembly is more elaborate compared to C

– C compiler does not necessarily produce optimum
code, in-depth knowledge of compiler helps

– Assembly code is platform dependent!

• Assembly or C?
– Know your platform!

– Know your task!
– Bottom line: as long as it does its job!

12PGT302 – Embedded Software Technology

Simple Implementation (BCM2835-ARM)

.section .boot
boot:

ldr r0,=0x20200000
@set gpio as output

mov r1,#1
lsl r1,#21
str r1,[r0,#16]

loop:
@clr gpio (on led!)

mov r1,#1
lsl r1,#15
str r1,[r0,#44]

@loop delay
mov r2,#0x3F0000

wait1:
sub r2,#1
cmp r2,#0
bne wait1

...

Infinite Loop (Assembly)
...

@set gpio (off led!)
mov r1,#1
lsl r1,#15
str r1,[r0,#32]

@loop delay
mov r2,#0x3F0000

wait2:
sub r2,#1
cmp r2,#0
bne wait2

@infinite loop
b loop

13PGT302 – Embedded Software Technology

Simple Implementation (BCM2835-ARM)

unsigned int *gpio, loop;

void main(void)
{
 gpio = (unsigned int*) 0x20200000;
 gpio[4] = 1 << 21;

 while(1)
 {
 gpio[11] = 1 << 15;
 for(loop=0;loop<0x3F0000;loop++);
 gpio[8] = 1 << 15;
 for(loop=0;loop<0x3F0000;loop++);
 }
}

Infinite Loop (C)

14PGT302 – Embedded Software Technology

Event Triggered

• Interrupts! → Know your hardware...

• Code (interrupt handler) only triggers when a
target interrupt occurs
– Must have stack infrastructure

• Advantages:
– Very efficient execution flow (system only

executes when needed)
– Easier to implement multi-tasking without a

scheduler (static scheduling)

– Enables power saving feature (only if supported by
hardware)

15PGT302 – Embedded Software Technology

Simple Implementation (8051)

led0 bit 0B4h ; P3.4
cseg at 0000h
jmp init
cseg at 000bh
jmp blink
cseg at 0040h

init: mov TMOD,#11h
mov TH0,#4bh
mov TL0,#0fdh
setb EA
setb ET0
setb TR0

here: jmp here
blink: cpl led0

mov TH0,#4bh
mov TL0,#0fdh
setb TR0
reti
end

__sbit __at (0xB5) led0; /* P3.5 */

void blink() __interrupt 1
{
 led0 = !led0;
 TH0 = 0x4B; TL0 = 0xFD; TR0 = 1;
}

void main()
{
 TMOD = 0x11;
 TH0 = 0x4B; TL0 = 0xFD;
 EA = 1; ET0 = 1; TR0 = 1;
 while(1)
 {
 }
}

Assembly C

Event Triggered

16PGT302 – Embedded Software Technology

Event Triggered (cont.)

• Analysis of given simple implementation to
blink an LED on 8051:
– Clearly, C is more compact!

– In event-triggered implementations, main loop may
be empty!

– Hardware initialization required → platform!
– Even in C, some knowledge on hardware is

required!

• Things look easier in C?
– Still, it is a matter of taste... for now!

17PGT302 – Embedded Software Technology

Multitasking

• Single process with proper timing (static
scheduling)

• All tasks are known at design time

• All tasks must finish in one execution cycle
– Either set limit for each task (limited task) OR,
– Expand execution cycle (slower response)

• Can be seen as cooperative multitasking

• Advantages:
– Does not need any special hardware requirements
– Program flow is clearly defined and relatively

simple to debug

18PGT302 – Embedded Software Technology

Multitasking (cont.)

• Example:
– Task 1 - Generate 12.5 Hz square wave
– Task 2 - Generate 10 Hz square wave
– Task 3 - Blink LED at rate ½ sec

• Time-triggered (event is based on timer)
– Get an optimum system time slice!
– Too small: not enough for tasks

– Too large: system not responsive

19PGT302 – Embedded Software Technology

Multitasking (cont.)

20PGT302 – Embedded Software Technology

Bare metal on Raspberrry Pi

• Refer to codes in my1barepi
– provides 'library' for easier coding experience

• GPIO access
– include: gpio.h
– initialize: gpio_init();
– configure: gpio_config(<num>,<type>);
– set to VDD: gpio_set(<num>);

– set to GND: gpio_clr(<num>);
– read status: gpio_read(<num>);

21PGT302 – Embedded Software Technology

Bare metal on Raspberrry Pi (cont.)

• Timer access (free-running counter)
– include: timer.h
– initialize: timer_init();
– delay: timer_wait(<delay_us>);
– read timer/counter value: timer_read();

• Timer access extension (control&interupt):
– enable: timer_active(<enable>);
– load value: timer_load(<32-bit_countdown);
– enable irq: timer_setirq(<enable>);
– clear irq pending bit: timer_irq_clear();
– check irq pending bit: timer_irq_masked();

22PGT302 – Embedded Software Technology

Bare metal on Raspberrry Pi (cont.)

• Interrupt access
– include: interrupt.h
– initialize: interrupt_init();
– enable: interrupt_enable(<set>,<select>);
– disable: interrupt_disable(<set>,<select>);
– read pending bits: interrupt_pending(<set>,<mask>);
– need special boot.s (assembly code configuration)
– checkout example in my1barepi/t03_interrupt

23PGT302 – Embedded Software Technology

Examples

• Lighthouse control
– detect daylight (light-up when dark)
– rotate at given rate (blink?)

• Traffic light control
– generic 4-junction, timer based

• Pedestrian light control
– single/dual request button
– blinking green instead of yellow

24PGT302 – Embedded Software Technology

The End

of Part 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

